Fuzzy Logic

On the Prediction of Evaporation in Arid Climate Using Machine Learning Model


Evaporation calculations are important for the proper management of hydrological resources, such as reservoirs, lakes, and rivers. Data-driven approaches, such as adaptive neuro fuzzy inference, are getting popular in many hydrological fields. This paper investigates the effective implementation of artificial intelligence on the prediction of evaporation for agricultural area. In particular, it presents the adaptive neuro fuzzy inference system (ANFIS) and hybridization of ANFIS with three optimizers, which include the genetic algorithm (GA), firefly algorithm (FFA), and particle swarm optimizer (PSO). Six different measured weather variables are taken for the proposed modelling approach, including the maximum, minimum, and average air temperature, sunshine hours, wind speed, and relative humidity of a given location. Models are separately calibrated with a total of 86 data points over an eight-year period, from 2010 to 2017, at the specified station, located in Arizona, United States of America. Farming lands and humid climates are the reason for choosing this location. Ten statistical indices are calculated to find the best fit model. Comparisons shows that ANFIS and ANFIS–PSO are slightly better than ANFIS–FFA and ANFIS–GA. Though the hybrid ANFIS–PSO (R2= 0.99, VAF = 98.85, RMSE = 9.73, SI = 0.05) is very close to the ANFIS (R2 = 0.99, VAF = 99.04, RMSE = 8.92, SI = 0.05) model, preference can be given to ANFIS, due to its simplicity and easy operation.

Fuzzy Pooling Artificial Intelligence

Convolutional Neural Networks (CNNs) are artificial learning systems typically based on two operations: convolution, which implements feature extraction through filtering, and pooling, which implements dimensionality reduction. The impact of pooling in the classification performance of the CNNs has been highlighted in several previous works, and a variety of alternative pooling operators have been proposed. However, only a few of them tackle with the uncertainty that is naturally propagated from the input layer to the feature maps of the hidden layers through convolutions. In this paper we present a novel pooling operation based on (type-1) fuzzy sets to cope with the local imprecision of the feature maps, and we investigate its performance in the context of image classification. Fuzzy pooling is performed by fuzzification, aggregation and defuzzification of feature map neighborhoods. It is used for the construction of a fuzzy pooling layer that can be applied as a drop-in replacement of the current, crisp, pooling layers of CNN architectures. Several experiments using publicly available datasets show that the proposed approach can enhance the classification performance of a CNN. A comparative evaluation shows that it outperforms state-of-the-art pooling approaches.

Implementation of a Type-2 Fuzzy Logic Based Prediction System for the Nigerian Stock Exchange Artificial Intelligence

Stock Market can be easily seen as one of the most attractive places for investors, but it is also very complex in terms of making trading decisions. Predicting the market is a risky venture because of the uncertainties and nonlinear nature of the market. Deciding on the right time to trade is key to every successful trader as it can lead to either a huge gain of money or totally a loss in investment that will be recorded as a careless trade. The aim of this research is to develop a prediction system for stock market using Fuzzy Logic Type2 which will handle these uncertainties and complexities of human behaviour in general when it comes to buy, hold or sell decision making in stock trading. The proposed system was developed using VB.NET programming language as frontend and Microsoft SQL Server as backend. A total of four different technical indicators were selected for this research. The selected indicators are the Relative Strength Index, William Average, Moving Average Convergence and Divergence, and Stochastic Oscillator. These indicators serve as input variable to the Fuzzy System. The MACD and SO are deployed as primary indicators, while the RSI and WA are used as secondary indicators. Fibonacci retracement ratio was adopted for the secondary indicators to determine their support and resistance level in terms of making trading decisions. The input variables to the Fuzzy System is fuzzified to Low, Medium, and High using the Triangular and Gaussian Membership Function. The Mamdani Type Fuzzy Inference rules were used for combining the trading rules for each input variable to the fuzzy system. The developed system was tested using sample data collected from ten different companies listed on the Nigerian Stock Exchange for a total of fifty two periods. The dataset collected are Opening, High, Low, and Closing prices of each security.



Fuzzy Logic isn't often mentioned in the same room as Artificial Intelligence (AI). Pardon the pun, but most people find the idea of fuzzy logic to be fuzzy. However fuzzy logic has been working behind the scenes and bringing forth amazing technological advances for more than two decades. Fuzzy logic is a rule-based system that can rely on the practical experience of a data scientist or an expert. Fuzzy logic is a form of artificial intelligence, thus it is considered a subset of AI. Since it is performing a form of decision making, it can be included as a member of the AI family which includes Machine Learning and Deep Learning.

Prediction of terephthalic acid (TPA) yield in aqueous hydrolysis of polyethylene terephthalate (PET) Artificial Intelligence

Aqueous hydrolysis is used to chemically recycle polyethylene terephthalate (PET) due to the production of high-quality terephthalic acid (TPA), the PET monomer. PET hydrolysis depends on various reaction conditions including PET size, catalyst concentration, reaction temperature, etc. So, modeling PET hydrolysis by considering the effective factors can provide useful information for material scientists to specify how to design and run these reactions. It will save time, energy, and materials by optimizing the hydrolysis conditions. Machine learning algorithms enable to design models to predict output results. For the first time, 381 experimental data were gathered to model the aqueous hydrolysis of PET. Effective reaction conditions on PET hydrolysis were connected to TPA yield. The logistic regression was applied to rank the reaction conditions. Two algorithms were proposed, artificial neural network multilayer perceptron (ANN-MLP) and adaptive network-based fuzzy inference system (ANFIS). The dataset was divided into training and testing sets to train and test the models, respectively. The models predicted TPA yield sufficiently where the ANFIS model outperformed. R-squared (R2) and Root Mean Square Error (RMSE) loss functions were employed to measure the efficiency of the models and evaluate their performance.

A Cooperation-Aware Lane Change Method for Autonomous Vehicles Artificial Intelligence

Lane change for autonomous vehicles (AVs) is an important but challenging task in complex dynamic traffic environments. Due to difficulties in guarantee safety as well as a high efficiency, AVs are inclined to choose relatively conservative strategies for lane change. To avoid the conservatism, this paper presents a cooperation-aware lane change method utilizing interactions between vehicles. We first propose an interactive trajectory prediction method to explore possible cooperations between an AV and the others. Further, an evaluation is designed to make a decision on lane change, in which safety, efficiency and comfort are taken into consideration. Thereafter, we propose a motion planning algorithm based on model predictive control (MPC), which incorporates AV's decision and surrounding vehicles' interactive behaviors into constraints so as to avoid collisions during lane change. Quantitative testing results show that compared with the methods without an interactive prediction, our method enhances driving efficiencies of the AV and other vehicles by 14.8$\%$ and 2.6$\%$ respectively, which indicates that a proper utilization of vehicle interactions can effectively reduce the conservatism of the AV and promote the cooperation between the AV and others.

Comparison research on binary relations based on transitive degrees and cluster degrees Artificial Intelligence

Interval-valued information systems are generalized models of single-valued information systems. By rough set approach, interval-valued information systems have been extensively studied. Authors could establish many binary relations from the same interval-valued information system. In this paper, we do some researches on comparing these binary relations so as to provide numerical scales for choosing suitable relations in dealing with interval-valued information systems. Firstly, based on similarity degrees, we compare the most common three binary relations induced from the same interval-valued information system. Secondly, we propose the concepts of transitive degree and cluster degree, and investigate their properties. Finally, we provide some methods to compare binary relations by means of the transitive degree and the cluster degree. Furthermore, we use these methods to analyze the most common three relations induced from Face Recognition Dataset, and obtain that $RF_{B} ^{\lambda}$ is a good choice when we deal with an interval-valued information system by means of rough set approach.

Tensor and Matrix Low-Rank Value-Function Approximation in Reinforcement Learning Artificial Intelligence

Value-function (VF) approximation is a central problem in Reinforcement Learning (RL). Classical non-parametric VF estimation suffers from the curse of dimensionality. As a result, parsimonious parametric models have been adopted to approximate VFs in high-dimensional spaces, with most efforts being focused on linear and neural-network-based approaches. Differently, this paper puts forth a a parsimonious non-parametric approach, where we use stochastic low-rank algorithms to estimate the VF matrix in an online and model-free fashion. Furthermore, as VFs tend to be multi-dimensional, we propose replacing the classical VF matrix representation with a tensor (multi-way array) representation and, then, use the PARAFAC decomposition to design an online model-free tensor low-rank algorithm. Different versions of the algorithms are proposed, their complexity is analyzed, and their performance is assessed numerically using standardized RL environments.

Profitable Strategy Design by Using Deep Reinforcement Learning for Trades on Cryptocurrency Markets Artificial Intelligence

Deep Reinforcement Learning solutions have been applied to different control problems with outperforming and promising results. In this research work we have applied Proximal Policy Optimization, Soft Actor-Critic and Generative Adversarial Imitation Learning to strategy design problem of three cryptocurrency markets. Our input data includes price data and technical indicators. We have implemented a Gym environment based on cryptocurrency markets to be used with the algorithms. Our test results on unseen data shows a great potential for this approach in helping investors with an expert system to exploit the market and gain profit. Our highest gain for an unseen 66 day span is 4850 US dollars per 10000 US dollars investment. We also discuss on how a specific hyperparameter in the environment design can be used to adjust risk in the generated strategies.

An Efficient and Accurate Rough Set for Feature Selection, Classification and Knowledge Representation Artificial Intelligence

This paper present a strong data mining method based on rough set, which can realize feature selection, classification and knowledge representation at the same time. Rough set has good interpretability, and is a popular method for feature selections. But low efficiency and low accuracy are its main drawbacks that limits its application ability. In this paper,corresponding to the accuracy, we first find the ineffectiveness of rough set because of overfitting, especially in processing noise attribute, and propose a robust measurement for an attribute, called relative importance.we proposed the concept of "rough concept tree" for knowledge representation and classification. Experimental results on public benchmark data sets show that the proposed framework achieves higher accurcy than seven popular or the state-of-the-art feature selection methods.