Goto

Collaborating Authors

Results



The Inescapable Duality of Data and Knowledge

arXiv.org Artificial Intelligence

We will discuss how over the last 30 to 50 years, systems that focused only on data have been handicapped with success focused on narrowly focused tasks, and knowledge has been critical in developing smarter, intelligent, more effective systems. We will draw a parallel with the role of knowledge and experience in human intelligence based on cognitive science. And we will end with the recent interest in neuro-symbolic or hybrid AI systems in which knowledge is the critical enabler for combining data-intensive statistical AI systems with symbolic AI systems which results in more capable AI systems that support more human-like intelligence.


Solving and Learning Nonlinear PDEs with Gaussian Processes

arXiv.org Machine Learning

We introduce a simple, rigorous, and unified framework for solving nonlinear partial differential equations (PDEs), and for solving inverse problems (IPs) involving the identification of parameters in PDEs, using the framework of Gaussian processes. The proposed approach (1) provides a natural generalization of collocation kernel methods to nonlinear PDEs and IPs, (2) has guaranteed convergence with a path to compute error bounds in the PDE setting, and (3) inherits the state-of-the-art computational complexity of linear solvers for dense kernel matrices. The main idea of our method is to approximate the solution of a given PDE with a MAP estimator of a Gaussian process given the observation of the PDE at a finite number of collocation points. Although this optimization problem is infinite-dimensional, it can be reduced to a finite-dimensional one by introducing additional variables corresponding to the values of the derivatives of the solution at collocation points; this generalizes the representer theorem arising in Gaussian process regression. The reduced optimization problem has a quadratic loss and nonlinear constraints, and it is in turn solved with a variant of the Gauss-Newton method. The resulting algorithm (a) can be interpreted as solving successive linearizations of the nonlinear PDE, and (b) is found in practice to converge in a small number (two to ten) of iterations in experiments conducted on a range of PDEs. For IPs, while the traditional approach has been to iterate between the identifications of parameters in the PDE and the numerical approximation of its solution, our algorithm tackles both simultaneously. Experiments on nonlinear elliptic PDEs, Burgers' equation, a regularized Eikonal equation, and an IP for permeability identification in Darcy flow illustrate the efficacy and scope of our framework.


Uncertainty Estimation in SARS-CoV-2 B-cell Epitope Prediction for Vaccine Development

arXiv.org Artificial Intelligence

B-cell epitopes play a key role in stimulating B-cells, triggering the primary immune response which results in antibody production as well as the establishment of long-term immunity in the form of memory cells. Consequently, being able to accurately predict appropriate linear B-cell epitope regions would pave the way for the development of new protein-based vaccines. Knowing how much confidence there is in a prediction is also essential for gaining clinicians' trust in the technology. In this article, we propose a calibrated uncertainty estimation in deep learning to approximate variational Bayesian inference using MC-DropWeights to predict epitope regions using the data from the immune epitope database. Having applied this onto SARS-CoV-2, it can more reliably predict B-cell epitopes than standard methods. This will be able to identify safe and effective vaccine candidates against Covid-19.


Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie

arXiv.org Machine Learning

Since the seminal work of Venkatakrishnan et al. (2013), Plug & Play (PnP) methods have become ubiquitous in Bayesian imaging. These methods derive Minimum Mean Square Error (MMSE) or Maximum A Posteriori (MAP) estimators for inverse problems in imaging by combining an explicit likelihood function with a prior that is implicitly defined by an image denoising algorithm. The PnP algorithms proposed in the literature mainly differ in the iterative schemes they use for optimisation or for sampling. In the case of optimisation schemes, some recent works guarantee the convergence to a fixed point, albeit not necessarily a MAP estimate. In the case of sampling schemes, to the best of our knowledge, there is no known proof of convergence. There also remain important open questions regarding whether the underlying Bayesian models and estimators are well defined, well-posed, and have the basic regularity properties required to support these numerical schemes. To address these limitations, this paper develops theory, methods, and provably convergent algorithms for performing Bayesian inference with PnP priors. We introduce two algorithms: 1) PnP-ULA (Unadjusted Langevin Algorithm) for Monte Carlo sampling and MMSE inference; and 2) PnP-SGD (Stochastic Gradient Descent) for MAP inference. Using recent results on the quantitative convergence of Markov chains, we establish detailed convergence guarantees for these two algorithms under realistic assumptions on the denoising operators used, with special attention to denoisers based on deep neural networks. We also show that these algorithms approximately target a decision-theoretically optimal Bayesian model that is well-posed. The proposed algorithms are demonstrated on several canonical problems such as image deblurring, inpainting, and denoising, where they are used for point estimation as well as for uncertainty visualisation and quantification.


White Paper Machine Learning in Certified Systems

arXiv.org Artificial Intelligence

Machine Learning (ML) seems to be one of the most promising solution to automate partially or completely some of the complex tasks currently realized by humans, such as driving vehicles, recognizing voice, etc. It is also an opportunity to implement and embed new capabilities out of the reach of classical implementation techniques. However, ML techniques introduce new potential risks. Therefore, they have only been applied in systems where their benefits are considered worth the increase of risk. In practice, ML techniques raise multiple challenges that could prevent their use in systems submitted to certification constraints. But what are the actual challenges? Can they be overcome by selecting appropriate ML techniques, or by adopting new engineering or certification practices? These are some of the questions addressed by the ML Certification 3 Workgroup (WG) set-up by the Institut de Recherche Technologique Saint Exup\'ery de Toulouse (IRT), as part of the DEEL Project.


Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks: Theory, Methods, and Algorithms

arXiv.org Machine Learning

This paper proposes a new methodology for performing Bayesian inference in imaging inverse problems where the prior knowledge is available in the form of training data. Following the manifold hypothesis and adopting a generative modelling approach, we construct a data-driven prior that is supported on a sub-manifold of the ambient space, which we can learn from the training data by using a variational autoencoder or a generative adversarial network. We establish the existence and well-posedness of the associated posterior distribution and posterior moments under easily verifiable conditions, providing a rigorous underpinning for Bayesian estimators and uncertainty quantification analyses. Bayesian computation is performed by using a parallel tempered version of the preconditioned Crank-Nicolson algorithm on the manifold, which is shown to be ergodic and robust to the non-convex nature of these data-driven models. In addition to point estimators and uncertainty quantification analyses, we derive a model misspecification test to automatically detect situations where the data-driven prior is unreliable, and explain how to identify the dimension of the latent space directly from the training data. The proposed approach is illustrated with a range of experiments with the MNIST dataset, where it outperforms alternative image reconstruction approaches from the state of the art. A model accuracy analysis suggests that the Bayesian probabilities reported by the data-driven models are also remarkably accurate under a frequentist definition of probability.


Pretraining the Noisy Channel Model for Task-Oriented Dialogue

arXiv.org Artificial Intelligence

Direct decoding for task-oriented dialogue is known to suffer from the explaining-away effect, manifested in models that prefer short and generic responses. Here we argue for the use of Bayes' theorem to factorize the dialogue task into two models, the distribution of the context given the response, and the prior for the response itself. This approach, an instantiation of the noisy channel model, both mitigates the explaining-away effect and allows the principled incorporation of large pretrained models for the response prior. We present extensive experiments showing that a noisy channel model decodes better responses compared to direct decoding and that a two stage pretraining strategy, employing both open-domain and task-oriented dialogue data, improves over randomly initialized models.


Deep Neural Network Based Ensemble learning Algorithms for the healthcare system (diagnosis of chronic diseases)

arXiv.org Artificial Intelligence

Diagnosis of chronic diseases and assistance in medical decisions is based on machine learning algorithms. In this paper, we review the classification algorithms used in the health care system (chronic diseases) and present the neural network-based Ensemble learning method. We briefly describe the commonly used algorithms and describe their critical properties. Materials and Methods: In this study, modern classification algorithms used in healthcare, examine the principles of these methods and guidelines, and to accurately diagnose and predict chronic diseases, superior machine learning algorithms with the neural network-based ensemble learning Is used. To do this, we use experimental data, real data on chronic patients (diabetes, heart, cancer) available on the UCI site. Results: We found that group algorithms designed to diagnose chronic diseases can be more effective than baseline algorithms. It also identifies several challenges to further advancing the classification of machine learning in the diagnosis of chronic diseases. Conclusion: The results show the high performance of the neural network-based Ensemble learning approach for the diagnosis and prediction of chronic diseases, which in this study reached 98.5, 99, and 100% accuracy, respectively.


Hybrid stacked ensemble combined with genetic algorithms for Prediction of Diabetes

arXiv.org Artificial Intelligence

Diabetes is currently one of the most common, dangerous, and costly diseases in the world that is caused by an increase in blood sugar or a decrease in insulin in the body. Diabetes can have detrimental effects on people's health if diagnosed late. Today, diabetes has become one of the challenges for health and government officials. Prevention is a priority, and taking care of people's health without compromising their comfort is an essential need. In this study, the Ensemble training methodology based on genetic algorithms are used to accurately diagnose and predict the outcomes of diabetes mellitus. In this study, we use the experimental data, real data on Indian diabetics on the University of California website. Current developments in ICT, such as the Internet of Things, machine learning, and data mining, allow us to provide health strategies with more intelligent capabilities to accurately predict the outcomes of the disease in daily life and the hospital and prevent the progression of this disease and it's many complications. The results show the high performance of the proposed method in diagnosing the disease, which has reached 98.8%, and 99% accuracy in this study.