Goto

Collaborating Authors

Results


On Universal Features for High-Dimensional Learning and Inference

arXiv.org Machine Learning

We consider the problem of identifying universal low-dimensional features from high-dimensional data for inference tasks in settings involving learning. For such problems, we introduce natural notions of universality and we show a local equivalence among them. Our analysis is naturally expressed via information geometry, and represents a conceptually and computationally useful analysis. The development reveals the complementary roles of the singular value decomposition, Hirschfeld-Gebelein-R\'enyi maximal correlation, the canonical correlation and principle component analyses of Hotelling and Pearson, Tishby's information bottleneck, Wyner's common information, Ky Fan $k$-norms, and Brieman and Friedman's alternating conditional expectations algorithm. We further illustrate how this framework facilitates understanding and optimizing aspects of learning systems, including multinomial logistic (softmax) regression and the associated neural network architecture, matrix factorization methods for collaborative filtering and other applications, rank-constrained multivariate linear regression, and forms of semi-supervised learning.


Sequential Recommendation with Relation-Aware Kernelized Self-Attention

arXiv.org Machine Learning

Recent studies identified that sequential Recommendation is improved by the attention mechanism. By following this development, we propose Relation-Aware Kernelized Self-Attention (RKSA) adopting a self-attention mechanism of the Transformer with augmentation of a probabilistic model. The original self-attention of Transformer is a deterministic measure without relation-awareness. Therefore, we introduce a latent space to the self-attention, and the latent space models the recommendation context from relation as a multivariate skew-normal distribution with a kernelized covariance matrix from co-occurrences, item characteristics, and user information. This work merges the self-attention of the Transformer and the sequential recommendation by adding a probabilistic model of the recommendation task specifics. We experimented RKSA over the benchmark datasets, and RKSA shows significant improvements compared to the recent baseline models. Also, RKSA were able to produce a latent space model that answers the reasons for recommendation.


The abstraction of probability theory.

#artificialintelligence

This discussion on'The Abstractionism of probability" is perhaps one of the first in the world to be discussed publicly. It has to be understood that, this discussion has evolved out of various other discussions with mathematicians, philosophers, doctors and engineers and many other participants including rappers, mainstream musicians, artists, actors and actresses. Because this was the subject matter for a documentary, to keep its serenity and purity, no filmmakers of any kind were interviewed. The film is in the making.


Causality and deceit: Do androids watch action movies?

arXiv.org Artificial Intelligence

We seek causes through science, religion, and in everyday life. We get excited when a big rock causes a big splash, and we get scared when it tumbles without a cause. But our causal cognition is usually biased. The 'why' is influenced by the 'who'. It is influenced by the 'self', and by 'others'. We share rituals, we watch action movies, and we influence each other to believe in the same causes. Human mind is packed with subjectivity because shared cognitive biases bring us together. But they also make us vulnerable. An artificial mind is deemed to be more objective than the human mind. After many years of science-fiction fantasies about even-minded androids, they are now sold as personal or expert assistants, as brand advocates, as policy or candidate supporters, as network influencers. Artificial agents have been stunningly successful in disseminating artificial causal beliefs among humans. As malicious artificial agents continue to manipulate human cognitive biases, and deceive human communities into ostensive but expansive causal illusions, the hope for defending us has been vested into developing benevolent artificial agents, tasked with preventing and mitigating cognitive distortions inflicted upon us by their malicious cousins. Can the distortions of human causal cognition be corrected on a more solid foundation of artificial causal cognition? In the present paper, we study a simple model of causal cognition, viewed as a quest for causal models. We show that, under very mild and hard to avoid assumptions, there are always self-confirming causal models, which perpetrate self-deception, and seem to preclude a royal road to objectivity.


OpenKI: Integrating Open Information Extraction and Knowledge Bases with Relation Inference

arXiv.org Machine Learning

In this paper, we consider advancing web-scale knowledge extraction and alignment by integrating OpenIE extractions in the form of (subject, predicate, object) triples with Knowledge Bases (KB). Traditional techniques from universal schema and from schema mapping fall in two extremes: either they perform instance-level inference relying on embedding for (subject, object) pairs, thus cannot handle pairs absent in any existing triples; or they perform predicate-level mapping and completely ignore background evidence from individual entities, thus cannot achieve satisfying quality. We propose OpenKI to handle sparsity of OpenIE extractions by performing instance-level inference: for each entity, we encode the rich information in its neighborhood in both KB and OpenIE extractions, and leverage this information in relation inference by exploring different methods of aggregation and attention. In order to handle unseen entities, our model is designed without creating entity-specific parameters. Extensive experiments show that this method not only significantly improves state-of-the-art for conventional OpenIE extractions like ReVerb, but also boosts the performance on OpenIE from semi-structured data, where new entity pairs are abundant and data are fairly sparse.


Neural Model-Based Reinforcement Learning for Recommendation

arXiv.org Machine Learning

There are great interests as well as many challenges in applying reinforcement learning (RL) to recommendation systems. In this setting, an online user is the environment; neither the reward function nor the environment dynamics are clearly defined, making the application of RL challenging. In this paper, we propose a novel model-based reinforcement learning framework for recommendation systems, where we develop a generative adversarial network to imitate user behavior dynamics and learn her reward function. Using this user model as the simulation environment, we develop a novel DQN algorithm to obtain a combinatorial recommendation policy which can handle a large number of candidate items efficiently. In our experiments with real data, we show this generative adversarial user model can better explain user behavior than alternatives, and the RL policy based on this model can lead to a better long-term reward for the user blackand higher click rate for the system.


On Cognitive Preferences and the Plausibility of Rule-based Models

arXiv.org Artificial Intelligence

It is conventional wisdom in machine learning and data mining that logical models such as rule sets are more interpretable than other models, and that among such rule-based models, simpler models are more interpretable than more complex ones. In this position paper, we question this latter assumption by focusing on one particular aspect of interpretability, namely the plausibility of models. Roughly speaking, we equate the plausibility of a model with the likeliness that a user accepts it as an explanation for a prediction. In particular, we argue that, all other things being equal, longer explanations may be more convincing than shorter ones, and that the predominant bias for shorter models, which is typically necessary for learning powerful discriminative models, may not be suitable when it comes to user acceptance of the learned models. To that end, we first recapitulate evidence for and against this postulate, and then report the results of an evaluation in a crowd-sourcing study based on about 3.000 judgments. The results do not reveal a strong preference for simple rules, whereas we can observe a weak preference for longer rules in some domains. We then relate these results to well-known cognitive biases such as the conjunction fallacy, the representative heuristic, or the recogition heuristic, and investigate their relation to rule length and plausibility.


Incorporating Discriminator in Sentence Generation: a Gibbs Sampling Method

AAAI Conferences

Generating plausible and fluent sentence with desired properties has long been a challenge. Most of the recent works use recurrent neural networks (RNNs) and their variants to predict following words given previous sequence and target label. In this paper, we propose a novel framework to generate constrained sentences via Gibbs Sampling. The candidate sentences are revised and updated iteratively, with sampled new words replacing old ones. Our experiments show the effectiveness of the proposed method to generate plausible and diverse sentences.


Modelling Preference Data with the Wallenius Distribution

arXiv.org Machine Learning

The Wallenius distribution is a generalisation of the Hypergeometric distribution where weights are assigned to balls of different colours. This naturally defines a model for ranking categories which can be used for classification purposes. Since, in general, the resulting likelihood is not analytically available, we adopt an approximate Bayesian computational (ABC) approach for estimating the importance of the categories. We illustrate the performance of the estimation procedure on simulated datasets. Finally, we use the new model for analysing two datasets about movies ratings and Italian academic statisticians' journal preferences. The latter is a novel dataset collected by the authors.


Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling

arXiv.org Machine Learning

We study parameter inference in large-scale latent variable models. We first propose an unified treatment of online inference for latent variable models from a non-canonical exponential family, and draw explicit links between several previously proposed frequentist or Bayesian methods. We then propose a novel inference method for the frequentist estimation of parameters, that adapts MCMC methods to online inference of latent variable models with the proper use of local Gibbs sampling. Then, for latent Dirich-let allocation,we provide an extensive set of experiments and comparisons with existing work, where our new approach outperforms all previously proposed methods. In particular, using Gibbs sampling for latent variable inference is superior to variational inference in terms of test log-likelihoods. Moreover, Bayesian inference through variational methods perform poorly, sometimes leading to worse fits with latent variables of higher dimensionality.