Collaborating Authors


A Brief Introduction to Recommendation Systems


Have you ever wondered how apps like Netflix or Spotify decide which movie or songs you're likely to prefer watching or listening to? Seems like magic, doesn't it? For instance, a lot of data is being mined and multiple complicated algorithms are developed by data science professionals in an attempt to make predictions more accurate. It is not magic but "machine learning." Machine learning is what allows the system to determine the movies and songs most relevant to your liking.

Cross-Domain Recommendation: Challenges, Progress, and Prospects Artificial Intelligence

To address the long-standing data sparsity problem in recommender systems (RSs), cross-domain recommendation (CDR) has been proposed to leverage the relatively richer information from a richer domain to improve the recommendation performance in a sparser domain. Although CDR has been extensively studied in recent years, there is a lack of a systematic review of the existing CDR approaches. To fill this gap, in this paper, we provide a comprehensive review of existing CDR approaches, including challenges, research progress, and future directions. Specifically, we first summarize existing CDR approaches into four types, including single-target CDR, multi-domain recommendation, dual-target CDR, and multi-target CDR. We then present the definitions and challenges of these CDR approaches. Next, we propose a full-view categorization and new taxonomies on these approaches and report their research progress in detail. In the end, we share several promising research directions in CDR.

A Complete Recommender System From Scratch in Python: Step by Step


Nowadays, we see recommendation systems everywhere. When you buy something in an online marketplace like Amazon, eBay, or any other place, they suggest similar products. On Netflix or youtube, you see the suggestions on your homepage similar to your previous activities or searches. They all follow this one idea. That is they take data from your previous activities and run a similarity analysis.

Freudian and Newtonian Recurrent Cell for Sequential Recommendation Artificial Intelligence

A sequential recommender system aims to recommend attractive items to users based on behaviour patterns. The predominant sequential recommendation models are based on natural language processing models, such as the gated recurrent unit, that embed items in some defined space and grasp the user's long-term and short-term preferences based on the item embeddings. However, these approaches lack fundamental insight into how such models are related to the user's inherent decision-making process. To provide this insight, we propose a novel recurrent cell, namely FaNC, from Freudian and Newtonian perspectives. FaNC divides the user's state into conscious and unconscious states, and the user's decision process is modelled by Freud's two principles: the pleasure principle and reality principle. To model the pleasure principle, i.e., free-floating user's instinct, we place the user's unconscious state and item embeddings in the same latent space and subject them to Newton's law of gravitation. Moreover, to recommend items to users, we model the reality principle, i.e., balancing the conscious and unconscious states, via a gating function. Based on extensive experiments on various benchmark datasets, this paper provides insight into the characteristics of the proposed model. FaNC initiates a new direction of sequential recommendations at the convergence of psychoanalysis and recommender systems.

8 Examples of Artificial Intelligence in our Everyday Lives


The applications of artificial intelligence have grown over the past decade. Here are examples of artificial intelligence that we use in our everyday lives. The words artificial intelligence may seem like a far-off concept that has nothing to do with us. But the truth is that we encounter several examples of artificial intelligence in our daily lives. From Netflix's movie recommendation to Amazon's Alexa, we now rely on various AI models without knowing it.

8 Examples of Artificial Intelligence in our Everyday Lives


The applications of artificial intelligence have grown exponentially over the past decade. Here are some examples of artificial intelligence at work today. The words artificial intelligence may seem like a far-off concept that has nothing to do with us. But the truth is that we encounter several examples of artificial intelligence in our daily lives. From Netflix's movie recommendation to Amazon's Alexa, we now rely on various AI models without knowing it.

Guide to Recommender Systems


Preferences can be described with the Utility Function (Microeconomics) 13 14. Use Machine Learning to Learn an Individual's Preferences 15 [Bouza et al., 2009], [Bouza, 2012] 16. 16 - Good - Bad 17. Represent Preferences, e.g., as Decision Tree 17 [Bouza, 2012] 18. Let's be pragmatic: Machine Learning Model approximates Utility Function 18 [Bouza, 2012] 19. Based on a personal true story in 2008 21. People who share similar prefernces in the past continue to do so in the future. People who have similar preferences in the past, continue to do so in the future.

The use of Recommender Systems in web technology and an in-depth analysis of Cold State problem Artificial Intelligence

In the WWW (World Wide Web), dynamic development and spread of data has resulted a tremendous amount of information available on the Internet, yet user is unable to find relevant information in a short span of time. Consequently, a system called recommendation system developed to help users find their infromation with ease through their browsing activities. In other words, recommender systems are tools for interacting with large amount of information that provide personalized view for prioritizing items likely to be of keen for users. They have developed over the years in artificial intelligence techniques that include machine learning and data mining amongst many to mention. Furthermore, the recommendation systems have personalized on an e-commerce, on-line applications such as, Netflix, and As a result, this has inspired many researchers to extend the reach of recommendation systems into new sets of challenges and problem areas that are yet to be truly solved, primarily a problem with the case of making a recommendation to a new user that is called cold-state (i.e. cold-start) user problem where the new user might likely not yield much of information searched. Therfore, the purpose of this paper is to tackle the said cold-start problem with a few effecient methods and challenges, as well as identify and overview the current state of recommendation system as a whole

Building A User-Centric and Content-Driven Socialbot Artificial Intelligence

To build Sounding Board, we develop a system architecture that is capable of accommodating dialog strategies that we designed for socialbot conversations. The architecture consists of a multi-dimensional language understanding module for analyzing user utterances, a hierarchical dialog management framework for dialog context tracking and complex dialog control, and a language generation process that realizes the response plan and makes adjustments for speech synthesis. Additionally, we construct a new knowledge base to power the socialbot by collecting social chat content from a variety of sources. An important contribution of the system is the synergy between the knowledge base and the dialog management, i.e., the use of a graph structure to organize the knowledge base that makes dialog control very efficient in bringing related content to the discussion. Using the data collected from Sounding Board during the competition, we carry out in-depth analyses of socialbot conversations and user ratings which provide valuable insights in evaluation methods for socialbots. We additionally investigate a new approach for system evaluation and diagnosis that allows scoring individual dialog segments in the conversation. Finally, observing that socialbots suffer from the issue of shallow conversations about topics associated with unstructured data, we study the problem of enabling extended socialbot conversations grounded on a document. To bring together machine reading and dialog control techniques, a graph-based document representation is proposed, together with methods for automatically constructing the graph. Using the graph-based representation, dialog control can be carried out by retrieving nodes or moving along edges in the graph. To illustrate the usage, a mixed-initiative dialog strategy is designed for socialbot conversations on news articles.

A Survey on Conversational Recommender Systems Artificial Intelligence

Recommender systems are software applications that help users to find items of interest in situations of information overload. Current research often assumes a one-shot interaction paradigm, where the users' preferences are estimated based on past observed behavior and where the presentation of a ranked list of suggestions is the main, one-directional form of user interaction. Conversational recommender systems (CRS) take a different approach and support a richer set of interactions. These interactions can, for example, help to improve the preference elicitation process or allow the user to ask questions about the recommendations and to give feedback. The interest in CRS has significantly increased in the past few years. This development is mainly due to the significant progress in the area of natural language processing, the emergence of new voice-controlled home assistants, and the increased use of chatbot technology. With this paper, we provide a detailed survey of existing approaches to conversational recommendation. We categorize these approaches in various dimensions, e.g., in terms of the supported user intents or the knowledge they use in the background. Moreover, we discuss technological approaches, review how CRS are evaluated, and finally identify a number of gaps that deserve more research in the future.