Goto

Collaborating Authors

Results


How Artificial Intelligence Can Help with Home Builders & Developers

#artificialintelligence

When most people think of Artificial Intelligence (AI) they probably think about their Amazon's Alexa, self-driving cars or Apple's Siri. However, AI can help be used for many other functions, including marketing and construction. Home builders and developers can incorporate AI in their marketing and construction efforts to impact growth in business and employee retention. The benefits of AI include improving efficiency in the workplace, solving complex problems, and even freeing up your time. Many businesses use AI-related machines or bots and other technologies today so they can use their time more wisely.


Alphabet's Next Billion-Dollar Business: 10 Industries To Watch - CB Insights Research

#artificialintelligence

Alphabet is using its dominance in the search and advertising spaces -- and its massive size -- to find its next billion-dollar business. From healthcare to smart cities to banking, here are 10 industries the tech giant is targeting. With growing threats from its big tech peers Microsoft, Apple, and Amazon, Alphabet's drive to disrupt has become more urgent than ever before. The conglomerate is leveraging the power of its first moats -- search and advertising -- and its massive scale to find its next billion-dollar businesses. To protect its current profits and grow more broadly, Alphabet is edging its way into industries adjacent to the ones where it has already found success and entering new spaces entirely to find opportunities for disruption. Evidence of Alphabet's efforts is showing up in several major industries. For example, the company is using artificial intelligence to understand the causes of diseases like diabetes and cancer and how to treat them. Those learnings feed into community health projects that serve the public, and also help Alphabet's effort to build smart cities. Elsewhere, Alphabet is using its scale to build a better virtual assistant and own the consumer electronics software layer. It's also leveraging that scale to build a new kind of Google Pay-operated checking account. In this report, we examine how Alphabet and its subsidiaries are currently working to disrupt 10 major industries -- from electronics to healthcare to transportation to banking -- and what else might be on the horizon. Within the world of consumer electronics, Alphabet has already found dominance with one product: Android. Mobile operating system market share globally is controlled by the Linux-based OS that Google acquired in 2005 to fend off Microsoft and Windows Mobile. Today, however, Alphabet's consumer electronics strategy is being driven by its work in artificial intelligence. Google is building some of its own hardware under the Made by Google line -- including the Pixel smartphone, the Chromebook, and the Google Home -- but the company is doing more important work on hardware-agnostic software products like Google Assistant (which is even available on iOS).


Five top artificial intelligence (AI) trends for 2019 - deepsense.ai

#artificialintelligence

As the recently launched AI Monthly digest shows, significant improvements, breakthroughs and game-changers in machine learning and AI are months or even weeks away, not years. It is, therefore, worth the challenge to summarize and show the most significant AI trends that are likely to unfold in 2019, as machine learning technology becomes one of the most prominent driving forces in both business and society. According to a recent Deloitte study, 82% of companies that have already invested in AI have gained a financial return on their investment. For companies among all industries, the median return on investment from cognitive technologies is 17%. AI is transforming daily life and business operations in a way seen during previous industrial revolutions.


A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.


What is AI? Everything you need to know about Artificial Intelligence ZDNet

#artificialintelligence

This ebook, based on the latest ZDNet / TechRepublic special feature, advises CXOs on how to approach AI and ML initiatives, figure out where the data science team fits in, and what algorithms to buy versus build. It depends who you ask. Back in the 1950s, the fathers of the field Minsky and McCarthy, described artificial intelligence as any task performed by a program or a machine that, if a human carried out the same activity, we would say the human had to apply intelligence to accomplish the task. That obviously is a fairly broad definition, which is why you will sometimes see arguments over whether something is truly AI or not. AI systems will typically demonstrate at least some of the following behaviors associated with human intelligence: planning, learning, reasoning, problem solving, knowledge representation, perception, motion, and manipulation and, to a lesser extent, social intelligence and creativity. AI is ubiquitous today, used to recommend what you should buy next online, to understand what you say to virtual assistants such as Amazon's Alexa and Apple's Siri, to recognise who and what is in a photo, to spot spam, or detect credit card fraud. AI might be a hot topic but you'll still need to justify those projects.


What is AI? Everything you need to know about Artificial Intelligence ZDNet

#artificialintelligence

Video: Getting started with artificial intelligence and machine learning It depends who you ask. Back in the 1950s, the fathers of the field Minsky andMcCarthy, described artificial intelligence as any task performed by a program or a machine that, if a human carried out the same activity, we would say the human had to apply intelligence to accomplish the task. That obviously is a fairly broad definition, which is why you will sometimes see arguments over whether something is truly AI or not. AI systems will typically demonstrate at least some of the following behaviors associated with human intelligence: planning, learning, reasoning, problem solving, knowledge representation, perception, motion, and manipulation and, to a lesser extent, social intelligence and creativity. AI is ubiquitous today, used to recommend what you should buy next online, to recognise what you say to virtual assistants such as Amazon's Alexa and Apple's Siri, to recognise who and what is in a photo, to spot spam, or detect credit card fraud. At a very high level artificial intelligence can be split into two broad types: narrow AI and general AI. Narrow AI is what we see all around us in computers today: intelligent systems that have been taught or learned how to carry out specific tasks without being explicitly programmed how to do so.


Five top artificial intelligence (AI) trends for 2019 deepsense.ai

#artificialintelligence

As the recently launched AI Monthly digest shows, significant improvements, breakthroughs and game-changers in machine learning and AI are months or even weeks away, not years. It is, therefore, worth the challenge to summarize and show the most significant AI trends that are likely to unfold in 2019, as machine learning technology becomes one of the most prominent driving forces in both business and society. According to a recent Deloitte study, 82% of companies that have already invested in AI have gained a financial return on their investment. For companies among all industries, the median return on investment from cognitive technologies is 17%. AI is transforming daily life and business operations in a way seen during previous industrial revolutions.


Human-Centered Artificial Intelligence and Machine Learning

arXiv.org Artificial Intelligence

Artificial intelligence (AI) is the study and design of algorithms that perform tasks or behaviors that a person could reasonably deem to require intelligence if a human were to do it. Broadly construed, an intelligent system can take many forms: a system designed to be indistinguishable from humans; a speech assistant such as Alexa, Siri, Cortana, or Google Assistant; a self-driving car; a recommender in an online commerce site; or a non-player character in a video game. We refer to intelligent systems as agents when they are capable of making some decisions on their own based on given goals. Machine learning (ML) is a particular approach to the design of intelligent system in which the system adapts its behavior based on data. It is the success of machine learning algorithms in particular that have lead to recent growth in commercialization of artificial intelligence. Humans are increasingly coming into contact with artificial intelligence and machine learning systems. At times it is evident, as in the case of Siri, Alexa, Cortana, or Google Assistant. It is also evident in the case of self-driving cars or non-player characters in computer games.


Analyze NPS with Machine Learning - Promoter.io Blog

#artificialintelligence

Later in this post, I'm going to name three different machine learning service providers. Based on the one you pick, like a fortune teller, I'm going to tell you a little bit about yourself. Seems like all machine learning is good for is asking Siri to play a song or self-driving cars that are far too expensive for me to afford. They have a saying here in Texas: all hat, no cattle. What if machine learning could do useful things for me?


27 Incredible Examples Of AI And Machine Learning In Practice

#artificialintelligence

There are so many amazing ways artificial intelligence and machine learning are used behind the scenes to impact our everyday lives and inform business decisions and optimize operations for some of the world's leading companies. Here are 27 amazing practical examples of AI and machine learning. Using natural language processing, machine learning and advanced analytics, Hello Barbie listens and responds to a child. A microphone on Barbie's necklace records what is said and transmits it to the servers at ToyTalk. There, the recording is analyzed to determine the appropriate response from 8,000 lines of dialogue.