Goto

Collaborating Authors

Results


"EHLO WORLD" -- Checking If Your Conversational AI Knows Right from Wrong

arXiv.org Artificial Intelligence

In this paper we discuss approaches to evaluating and validating the ethical claims of a Conversational AI system. We outline considerations around both a top-down regulatory approach and bottom-up processes. We describe the ethical basis for each approach and propose a hybrid which we demonstrate by taking the case of a customer service chatbot as an example. We speculate on the kinds of top-down and bottom-up processes that would need to exist for a hybrid framework to successfully function as both an enabler as well as a shepherd among multiple use-cases and multiple competing AI solutions.


A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.


Toward Fairness in AI for People with Disabilities: A Research Roadmap

arXiv.org Artificial Intelligence

AI technologies have the potential to dramatically impact the lives of people with disabilities (PWD). Indeed, improving the lives of PWD is a motivator for many state-of-the-art AI systems, such as automated speech recognition tools that can caption videos for people who are deaf and hard of hearing, or language prediction algorithms that can augment communication for people with speech or cognitive disabilities. However, widely deployed AI systems may not work properly for PWD, or worse, may actively discriminate against them. These considerations regarding fairness in AI for PWD have thus far received little attention. In this position paper, we identify potential areas of concern regarding how several AI technology categories may impact particular disability constituencies if care is not taken in their design, development, and testing. We intend for this risk assessment of how various classes of AI might interact with various classes of disability to provide a roadmap for future research that is needed to gather data, test these hypotheses, and build more inclusive algorithms.