Goto

Collaborating Authors

Results


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.


Black-box Adversarial Attacks on Commercial Speech Platforms with Minimal Information

arXiv.org Artificial Intelligence

Adversarial attacks against commercial black-box speech platforms, including cloud speech APIs and voice control devices, have received little attention until recent years. The current "black-box" attacks all heavily rely on the knowledge of prediction/confidence scores to craft effective adversarial examples, which can be intuitively defended by service providers without returning these messages. In this paper, we propose two novel adversarial attacks in more practical and rigorous scenarios. For commercial cloud speech APIs, we propose Occam, a decision-only black-box adversarial attack, where only final decisions are available to the adversary. In Occam, we formulate the decision-only AE generation as a discontinuous large-scale global optimization problem, and solve it by adaptively decomposing this complicated problem into a set of sub-problems and cooperatively optimizing each one. Our Occam is a one-size-fits-all approach, which achieves 100% success rates of attacks with an average SNR of 14.23dB, on a wide range of popular speech and speaker recognition APIs, including Google, Alibaba, Microsoft, Tencent, iFlytek, and Jingdong, outperforming the state-of-the-art black-box attacks. For commercial voice control devices, we propose NI-Occam, the first non-interactive physical adversarial attack, where the adversary does not need to query the oracle and has no access to its internal information and training data. We combine adversarial attacks with model inversion attacks, and thus generate the physically-effective audio AEs with high transferability without any interaction with target devices. Our experimental results show that NI-Occam can successfully fool Apple Siri, Microsoft Cortana, Google Assistant, iFlytek and Amazon Echo with an average SRoA of 52% and SNR of 9.65dB, shedding light on non-interactive physical attacks against voice control devices.


The AI Index 2021 Annual Report

arXiv.org Artificial Intelligence

Welcome to the fourth edition of the AI Index Report. This year we significantly expanded the amount of data available in the report, worked with a broader set of external organizations to calibrate our data, and deepened our connections with the Stanford Institute for Human-Centered Artificial Intelligence (HAI). The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Its mission is to provide unbiased, rigorously vetted, and globally sourced data for policymakers, researchers, executives, journalists, and the general public to develop intuitions about the complex field of AI. The report aims to be the most credible and authoritative source for data and insights about AI in the world.


Extreme Model Compression for On-device Natural Language Understanding

arXiv.org Artificial Intelligence

In this paper, we propose and experiment with techniques for extreme compression of neural natural language understanding (NLU) models, making them suitable for execution on resource-constrained devices. We propose a task-aware, end-to-end compression approach that performs word-embedding compression jointly with NLU task learning. We show our results on a large-scale, commercial NLU system trained on a varied set of intents with huge vocabulary sizes. Our approach outperforms a range of baselines and achieves a compression rate of 97.4% with less than 3.7% degradation in predictive performance. Our analysis indicates that the signal from the downstream task is important for effective compression with minimal degradation in performance.


Data Augmentation for Training Dialog Models Robust to Speech Recognition Errors

arXiv.org Artificial Intelligence

Speech-based virtual assistants, such as Amazon Alexa, Google assistant, and Apple Siri, typically convert users' audio signals to text data through automatic speech recognition (ASR) and feed the text to downstream dialog models for natural language understanding and response generation. The ASR output is error-prone; however, the downstream dialog models are often trained on error-free text data, making them sensitive to ASR errors during inference time. To bridge the gap and make dialog models more robust to ASR errors, we leverage an ASR error simulator to inject noise into the error-free text data, and subsequently train the dialog models with the augmented data. Compared to other approaches for handling ASR errors, such as using ASR lattice or end-to-end methods, our data augmentation approach does not require any modification to the ASR or downstream dialog models; our approach also does not introduce any additional latency during inference time. We perform extensive experiments on benchmark data and show that our approach improves the performance of downstream dialog models in the presence of ASR errors, and it is particularly effective in the low-resource situations where there are constraints on model size or the training data is scarce.


Building A User-Centric and Content-Driven Socialbot

arXiv.org Artificial Intelligence

To build Sounding Board, we develop a system architecture that is capable of accommodating dialog strategies that we designed for socialbot conversations. The architecture consists of a multi-dimensional language understanding module for analyzing user utterances, a hierarchical dialog management framework for dialog context tracking and complex dialog control, and a language generation process that realizes the response plan and makes adjustments for speech synthesis. Additionally, we construct a new knowledge base to power the socialbot by collecting social chat content from a variety of sources. An important contribution of the system is the synergy between the knowledge base and the dialog management, i.e., the use of a graph structure to organize the knowledge base that makes dialog control very efficient in bringing related content to the discussion. Using the data collected from Sounding Board during the competition, we carry out in-depth analyses of socialbot conversations and user ratings which provide valuable insights in evaluation methods for socialbots. We additionally investigate a new approach for system evaluation and diagnosis that allows scoring individual dialog segments in the conversation. Finally, observing that socialbots suffer from the issue of shallow conversations about topics associated with unstructured data, we study the problem of enabling extended socialbot conversations grounded on a document. To bring together machine reading and dialog control techniques, a graph-based document representation is proposed, together with methods for automatically constructing the graph. Using the graph-based representation, dialog control can be carried out by retrieving nodes or moving along edges in the graph. To illustrate the usage, a mixed-initiative dialog strategy is designed for socialbot conversations on news articles.


Training for Speech Recognition on Coprocessors

arXiv.org Machine Learning

Automatic Speech Recognition (ASR) has increased in popularity in recent years. The evolution of processor and storage technologies has enabled more advanced ASR mechanisms, fueling the development of virtual assistants such as Amazon Alexa, Apple Siri, Microsoft Cortana, and Google Home. The interest in such assistants, in turn, has amplified the novel developments in ASR research. However, despite this popularity, there has not been a detailed training efficiency analysis of modern ASR systems. This mainly stems from: the proprietary nature of many modern applications that depend on ASR, like the ones listed above; the relatively expensive co-processor hardware that is used to accelerate ASR by big vendors to enable such applications; and the absence of well-established benchmarks. The goal of this paper is to address the latter two of these challenges. The paper first describes an ASR model, based on a deep neural network inspired by recent work in this domain, and our experiences building it. Then we evaluate this model on three CPU-GPU co-processor platforms that represent different budget categories. Our results demonstrate that utilizing hardware acceleration yields good results even without high-end equipment. While the most expensive platform (10X price of the least expensive one) converges to the initial accuracy target 10-30% and 60-70% faster than the other two, the differences among the platforms almost disappear at slightly higher accuracy targets. In addition, our results further highlight both the difficulty of evaluating ASR systems due to the complex, long, and resource intensive nature of the model training in this domain, and the importance of establishing benchmarks for ASR.


NVIDIA Enables Era of Interactive Conversational AI with New Inference Software

#artificialintelligence

NVIDIA today introduced groundbreaking inference software that developers everywhere can use to deliver conversational AI applications, slashing inference latency that until now has impeded true, interactive engagement. NVIDIA TensorRT 7 -- the seventh generation of the company's inference software development kit -- opens the door to smarter human-to-AI interactions, enabling real-time engagement with applications such as voice agents, chatbots and recommendation engines. It is estimated that there are 3.25 billion digital voice assistants being used in devices around the world, according to Juniper Research. By 2023, that number is expected to reach 8 billion, more than the world's total population. TensorRT 7 features a new deep learning compiler designed to automatically optimize and accelerate the increasingly complex recurrent and transformer-based neural networks needed for AI speech applications.


A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.


Survey on Evaluation Methods for Dialogue Systems

arXiv.org Artificial Intelligence

In this paper we survey the methods and concepts developed for the evaluation of dialogue systems. Evaluation is a crucial part during the development process. Often, dialogue systems are evaluated by means of human evaluations and questionnaires. However, this tends to be very cost and time intensive. Thus, much work has been put into finding methods, which allow to reduce the involvement of human labour. In this survey, we present the main concepts and methods. For this, we differentiate between the various classes of dialogue systems (task-oriented dialogue systems, conversational dialogue systems, and question-answering dialogue systems). We cover each class by introducing the main technologies developed for the dialogue systems and then by presenting the evaluation methods regarding this class.