Collaborating Authors


People with sexy Tinder photos are more likely to be seen as incompetent and unlikeable

Daily Mail - Science & tech

While dating apps were once seen as a last resort for finding love, they're now the go-to option for millions of singletons around the world. But if you use Tinder, Bumble or Hinge, a new study may encourage you to reassess which photos you include. Researchers from the University of Arizona have revealed that people with sexy photos on their dating profiles are more likely to seen as incompetent and unlikeable. People who opt for saucy snaps are also less likely to be seen as looking for a long-term relationship than people with less sexy photos. The first incarnation of a dating app can be traced back to 1995 when was first launched.

Personalized multi-faceted trust modeling to determine trust links in social media and its potential for misinformation management Artificial Intelligence

In this paper, we present an approach for predicting trust links between peers in social media, one that is grounded in the artificial intelligence area of multiagent trust modeling. In particular, we propose a data-driven multi-faceted trust modeling which incorporates many distinct features for a comprehensive analysis. We focus on demonstrating how clustering of similar users enables a critical new functionality: supporting more personalized, and thus more accurate predictions for users. Illustrated in a trust-aware item recommendation task, we evaluate the proposed framework in the context of a large Yelp dataset. We then discuss how improving the detection of trusted relationships in social media can assist in supporting online users in their battle against the spread of misinformation and rumours, within a social networking environment which has recently exploded in popularity. We conclude with a reflection on a particularly vulnerable user base, older adults, in order to illustrate the value of reasoning about groups of users, looking to some future directions for integrating known preferences with insights gained through data analysis.

Recommending POIs for Tourists by User Behavior Modeling and Pseudo-Rating Artificial Intelligence

POI recommendation is a key task in tourism information systems. However, in contrast to conventional point of interest (POI) recommender systems, the available data is extremely sparse; most tourist visit a few sightseeing spots once and most of these spots have no check-in data from new tourists. Most conventional systems rank sightseeing spots based on their popularity, reputations, and category-based similarities with users' preferences. They do not clarify what users can experience in these spots, which makes it difficult to meet diverse tourism needs. To this end, in this work, we propose a mechanism to recommend POIs to tourists. Our mechanism include two components: one is a probabilistic model that reveals the user behaviors in tourism; the other is a pseudo rating mechanism to handle the cold-start issue in POIs recommendations. We carried out extensive experiments with two datasets collected from Flickr. The experimental results demonstrate that our methods are superior to the state-of-the-art methods in both the recommendation performances (precision, recall and F-measure) and fairness. The experimental results also validate the robustness of the proposed methods, i.e., our methods can handle well the issue of data sparsity.

Sequential Modelling with Applications to Music Recommendation, Fact-Checking, and Speed Reading Artificial Intelligence

Sequential modelling entails making sense of sequential data, which naturally occurs in a wide array of domains. One example is systems that interact with users, log user actions and behaviour, and make recommendations of items of potential interest to users on the basis of their previous interactions. In such cases, the sequential order of user interactions is often indicative of what the user is interested in next. Similarly, for systems that automatically infer the semantics of text, capturing the sequential order of words in a sentence is essential, as even a slight re-ordering could significantly alter its original meaning. This thesis makes methodological contributions and new investigations of sequential modelling for the specific application areas of systems that recommend music tracks to listeners and systems that process text semantics in order to automatically fact-check claims, or "speed read" text for efficient further classification.

Trustworthy AI: A Computational Perspective Artificial Intelligence

In the past few decades, artificial intelligence (AI) technology has experienced swift developments, changing everyone's daily life and profoundly altering the course of human society. The intention of developing AI is to benefit humans, by reducing human labor, bringing everyday convenience to human lives, and promoting social good. However, recent research and AI applications show that AI can cause unintentional harm to humans, such as making unreliable decisions in safety-critical scenarios or undermining fairness by inadvertently discriminating against one group. Thus, trustworthy AI has attracted immense attention recently, which requires careful consideration to avoid the adverse effects that AI may bring to humans, so that humans can fully trust and live in harmony with AI technologies. Recent years have witnessed a tremendous amount of research on trustworthy AI. In this survey, we present a comprehensive survey of trustworthy AI from a computational perspective, to help readers understand the latest technologies for achieving trustworthy AI. Trustworthy AI is a large and complex area, involving various dimensions. In this work, we focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being. For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems. We also discuss the accordant and conflicting interactions among different dimensions and discuss potential aspects for trustworthy AI to investigate in the future.

Predicting user demographics based on interest analysis Artificial Intelligence

These days, due to the increasing amount of information generated on the web, most web service providers try to personalize their services. Users also interact with web-based systems in multiple ways and state their interests and preferences by rating the provided items. This paper proposes a framework to predict users' demographic based on ratings registered by users in a system. To the best of our knowledge, this is the first time that the item ratings are employed for users' demographic prediction problems, which have extensively been studied in recommendation systems and service personalization. We apply the framework to the Movielens dataset's ratings and predict users' age and gender. The experimental results show that using all ratings registered by users improves the prediction accuracy by at least 16% compared with previously studied models. Moreover, by classifying the items as popular and unpopular, we eliminate ratings that belong to 95% of items and still reach an acceptable level of accuracy. This significantly reduces update costs in a time-varying environment. Besides this classification, we propose other methods to reduce data volume while keeping the predictions accurate.

Why Humans See Faces in Everyday Objects


Human beings are champions at spotting patterns, especially faces, in inanimate objects--think of the famous "face on Mars" in images taken by the Viking 1 orbiter in 1976, which is essentially a trick of light and shadow. And people are always spotting what they believe to be the face of Jesus in burnt toast and many other (so many) ordinary foodstuffs. There was even a (now defunct) Twitter account devoted to curating images of the "faces in things" phenomenon. This story originally appeared on Ars Technica, a trusted source for technology news, tech policy analysis, reviews, and more. Ars is owned by WIRED's parent company, Condé Nast.

Identifying Influential Users in Unknown Social Networks for Adaptive Incentive Allocation Under Budget Restriction Artificial Intelligence

In recent years, recommendation systems have been widely applied in many domains. These systems are impotent in affecting users to choose the behavior that the system expects. Meanwhile, providing incentives has been proven to be a more proactive way to affect users' behaviors. Due to the budget limitation, the number of users who can be incentivized is restricted. In this light, we intend to utilize social influence existing among users to enhance the effect of incentivization. Through incentivizing influential users directly, their followers in the social network are possibly incentivized indirectly. However, in many real-world scenarios, the topological structure of the network is usually unknown, which makes identifying influential users difficult. To tackle the aforementioned challenges, in this paper, we propose a novel algorithm for exploring influential users in unknown networks, which can estimate the influential relationships among users based on their historical behaviors and without knowing the topology of the network. Meanwhile, we design an adaptive incentive allocation approach that determines incentive values based on users' preferences and their influence ability. We evaluate the performance of the proposed approaches by conducting experiments on both synthetic and real-world datasets. The experimental results demonstrate the effectiveness of the proposed approaches.

The Role of Social Movements, Coalitions, and Workers in Resisting Harmful Artificial Intelligence and Contributing to the Development of Responsible AI Artificial Intelligence

There is mounting public concern over the influence that AI based systems has in our society. Coalitions in all sectors are acting worldwide to resist hamful applications of AI. From indigenous people addressing the lack of reliable data, to smart city stakeholders, to students protesting the academic relationships with sex trafficker and MIT donor Jeffery Epstein, the questionable ethics and values of those heavily investing in and profiting from AI are under global scrutiny. There are biased, wrongful, and disturbing assumptions embedded in AI algorithms that could get locked in without intervention. Our best human judgment is needed to contain AI's harmful impact. Perhaps one of the greatest contributions of AI will be to make us ultimately understand how important human wisdom truly is in life on earth.

Using Social Media Background to Improve Cold-start Recommendation Deep Models Artificial Intelligence

In recommender systems, a cold-start problem occurs when there is no past interaction record associated with the user or item. Typical solutions to the cold-start problem make use of contextual information, such as user demographic attributes or product descriptions. A group of works have shown that social media background can help predicting temporal phenomenons such as product sales and stock price movements. In this work, our goal is to investigate whether social media background can be used as extra contextual information to improve recommendation models. Based on an existing deep neural network model, we proposed a method to represent temporal social media background as embeddings and fuse them as an extra component in the model. We conduct experimental evaluations on a real-world e-commerce dataset and a Twitter dataset. The results show that our method of fusing social media background with the existing model does generally improve recommendation performance. In some cases the recommendation accuracy measured by hit-rate@K doubles after fusing with social media background. Our findings can be beneficial for future recommender system designs that consider complex temporal information representing social interests.