Goto

Collaborating Authors

Results


A Semantic Web Framework for Automated Smart Assistants: COVID-19 Case Study

arXiv.org Artificial Intelligence

COVID-19 pandemic elucidated that knowledge systems will be instrumental in cases where accurate information needs to be communicated to a substantial group of people with different backgrounds and technological resources. However, several challenges and obstacles hold back the wide adoption of virtual assistants by public health departments and organizations. This paper presents the Instant Expert, an open-source semantic web framework to build and integrate voice-enabled smart assistants (i.e. chatbots) for any web platform regardless of the underlying domain and technology. The component allows non-technical domain experts to effortlessly incorporate an operational assistant with voice recognition capability into their websites. Instant Expert is capable of automatically parsing, processing, and modeling Frequently Asked Questions pages as an information resource as well as communicating with an external knowledge engine for ontology-powered inference and dynamic data utilization. The presented framework utilizes advanced web technologies to ensure reusability and reliability, and an inference engine for natural language understanding powered by deep learning and heuristic algorithms. A use case for creating an informatory assistant for COVID-19 based on the Centers for Disease Control and Prevention (CDC) data is presented to demonstrate the framework's usage and benefits.


Best Public Datasets for Machine Learning and Data Science

#artificialintelligence

This resource is continuously updated. If you know any other suitable and open dataset, please let us know by emailing us at pub@towardsai.net or by dropping a comment below. Check out the Monte Carlo Simulation An In-depth Tutorial with Python. Google Dataset Search: Similar to how Google Scholar works, Dataset Search lets you find datasets wherever they are hosted, whether it's a publisher's site, a digital library, or an author's web page. It's a phenomenal dataset finder, and it contains over 25 million datasets.


Reciprocal Recommender Systems: Analysis of State-of-Art Literature, Challenges and Opportunities on Social Recommendation

arXiv.org Artificial Intelligence

Many social services including online dating, social media, recruitment and online learning, largely rely on \matching people with the right people". The success of these services and the user experience with them often depends on their ability to match users. Reciprocal Recommender Systems (RRS) arose to facilitate this process by identifying users who are a potential match for each other, based on information provided by them. These systems are inherently more complex than user-item recommendation approaches and unidirectional user recommendation services, since they need to take into account both users' preferences towards each other in the recommendation process. This entails not only predicting accurate preference estimates as classical recommenders do, but also defining adequate fusion processes for aggregating user-to-user preferential information. The latter is a crucial and distinctive, yet barely investigated aspect in RRS research. This paper presents a snapshot analysis of the extant literature to summarize the state-of-the-art RRS research to date, focusing on the fundamental features that differentiate RRSs from other classes of recommender systems. Following this, we discuss the challenges and opportunities for future research on RRSs, with special focus on (i) fusion strategies to account for reciprocity and (ii) emerging application domains related to social recommendation.


AI Research Considerations for Human Existential Safety (ARCHES)

arXiv.org Artificial Intelligence

Framed in positive terms, this report examines how technical AI research might be steered in a manner that is more attentive to humanity's long-term prospects for survival as a species. In negative terms, we ask what existential risks humanity might face from AI development in the next century, and by what principles contemporary technical research might be directed to address those risks. A key property of hypothetical AI technologies is introduced, called \emph{prepotence}, which is useful for delineating a variety of potential existential risks from artificial intelligence, even as AI paradigms might shift. A set of \auxref{dirtot} contemporary research \directions are then examined for their potential benefit to existential safety. Each research direction is explained with a scenario-driven motivation, and examples of existing work from which to build. The research directions present their own risks and benefits to society that could occur at various scales of impact, and in particular are not guaranteed to benefit existential safety if major developments in them are deployed without adequate forethought and oversight. As such, each direction is accompanied by a consideration of potentially negative side effects.


Foundations of Explainable Knowledge-Enabled Systems

arXiv.org Artificial Intelligence

Explainability has been an important goal since the early days of Artificial Intelligence. Several approaches for producing explanations have been developed. However, many of these approaches were tightly coupled with the capabilities of the artificial intelligence systems at the time. With the proliferation of AI-enabled systems in sometimes critical settings, there is a need for them to be explainable to end-users and decision-makers. We present a historical overview of explainable artificial intelligence systems, with a focus on knowledge-enabled systems, spanning the expert systems, cognitive assistants, semantic applications, and machine learning domains. Additionally, borrowing from the strengths of past approaches and identifying gaps needed to make explanations user- and context-focused, we propose new definitions for explanations and explainable knowledge-enabled systems.


Health State Estimation

arXiv.org Artificial Intelligence

Life's most valuable asset is health. Continuously understanding the state of our health and modeling how it evolves is essential if we wish to improve it. Given the opportunity that people live with more data about their life today than any other time in history, the challenge rests in interweaving this data with the growing body of knowledge to compute and model the health state of an individual continually. This dissertation presents an approach to build a personal model and dynamically estimate the health state of an individual by fusing multi-modal data and domain knowledge. The system is stitched together from four essential abstraction elements: 1. the events in our life, 2. the layers of our biological systems (from molecular to an organism), 3. the functional utilities that arise from biological underpinnings, and 4. how we interact with these utilities in the reality of daily life. Connecting these four elements via graph network blocks forms the backbone by which we instantiate a digital twin of an individual. Edges and nodes in this graph structure are then regularly updated with learning techniques as data is continuously digested. Experiments demonstrate the use of dense and heterogeneous real-world data from a variety of personal and environmental sensors to monitor individual cardiovascular health state. State estimation and individual modeling is the fundamental basis to depart from disease-oriented approaches to a total health continuum paradigm. Precision in predicting health requires understanding state trajectory. By encasing this estimation within a navigational approach, a systematic guidance framework can plan actions to transition a current state towards a desired one. This work concludes by presenting this framework of combining the health state and personal graph model to perpetually plan and assist us in living life towards our goals.


Alphabet's Next Billion-Dollar Business: 10 Industries To Watch - CB Insights Research

#artificialintelligence

Alphabet is using its dominance in the search and advertising spaces -- and its massive size -- to find its next billion-dollar business. From healthcare to smart cities to banking, here are 10 industries the tech giant is targeting. With growing threats from its big tech peers Microsoft, Apple, and Amazon, Alphabet's drive to disrupt has become more urgent than ever before. The conglomerate is leveraging the power of its first moats -- search and advertising -- and its massive scale to find its next billion-dollar businesses. To protect its current profits and grow more broadly, Alphabet is edging its way into industries adjacent to the ones where it has already found success and entering new spaces entirely to find opportunities for disruption. Evidence of Alphabet's efforts is showing up in several major industries. For example, the company is using artificial intelligence to understand the causes of diseases like diabetes and cancer and how to treat them. Those learnings feed into community health projects that serve the public, and also help Alphabet's effort to build smart cities. Elsewhere, Alphabet is using its scale to build a better virtual assistant and own the consumer electronics software layer. It's also leveraging that scale to build a new kind of Google Pay-operated checking account. In this report, we examine how Alphabet and its subsidiaries are currently working to disrupt 10 major industries -- from electronics to healthcare to transportation to banking -- and what else might be on the horizon. Within the world of consumer electronics, Alphabet has already found dominance with one product: Android. Mobile operating system market share globally is controlled by the Linux-based OS that Google acquired in 2005 to fend off Microsoft and Windows Mobile. Today, however, Alphabet's consumer electronics strategy is being driven by its work in artificial intelligence. Google is building some of its own hardware under the Made by Google line -- including the Pixel smartphone, the Chromebook, and the Google Home -- but the company is doing more important work on hardware-agnostic software products like Google Assistant (which is even available on iOS).


Advances in Collaborative Filtering and Ranking

arXiv.org Machine Learning

In this dissertation, we cover some recent advances in collaborative filtering and ranking. In chapter 1, we give a brief introduction of the history and the current landscape of collaborative filtering and ranking; chapter 2 we first talk about pointwise collaborative filtering problem with graph information, and how our proposed new method can encode very deep graph information which helps four existing graph collaborative filtering algorithms; chapter 3 is on the pairwise approach for collaborative ranking and how we speed up the algorithm to near-linear time complexity; chapter 4 is on the new listwise approach for collaborative ranking and how the listwise approach is a better choice of loss for both explicit and implicit feedback over pointwise and pairwise loss; chapter 5 is about the new regularization technique Stochastic Shared Embeddings (SSE) we proposed for embedding layers and how it is both theoretically sound and empirically effectively for 6 different tasks across recommendation and natural language processing; chapter 6 is how we introduce personalization for the state-of-the-art sequential recommendation model with the help of SSE, which plays an important role in preventing our personalized model from overfitting to the training data; chapter 7, we summarize what we have achieved so far and predict what the future directions can be; chapter 8 is the appendix to all the chapters.


DiffNet++: A Neural Influence and Interest Diffusion Network for Social Recommendation

arXiv.org Machine Learning

Social recommendation has emerged to leverage social connections among users for predicting users' unknown preferences, which could alleviate the data sparsity issue in collaborative filtering based recommendation. Early approaches relied on utilizing each user's first-order social neighbors' interests for better user modeling, and failed to model the social influence diffusion process from the global social network structure. Recently, we propose a preliminary work of a neural influence diffusion network~(i.e., DiffNet) for social recommendation~(Diffnet), which models the recursive social diffusion process to capture the higher-order relationships for each user. However, we argue that, as users play a central role in both user-user social network and user-item interest network, only modeling the influence diffusion process in the social network would neglect the users' latent collaborative interests in the user-item interest network. In this paper, we propose DiffNet++, an improved algorithm of DiffNet that models the neural influence diffusion and interest diffusion in a unified framework. By reformulating the social recommendation as a heterogeneous graph with social network and interest network as input, DiffNet++ advances DiffNet by injecting these two network information for user embedding learning at the same time. This is achieved by iteratively aggregating each user's embedding from three aspects: the user's previous embedding, the influence aggregation of social neighbors from the social network, and the interest aggregation of item neighbors from the user-item interest network. Furthermore, we design a multi-level attention network that learns how to attentively aggregate user embeddings from these three aspects. Finally, extensive experimental results on two real-world datasets clearly show the effectiveness of our proposed model.


Measuring Diversity in Heterogeneous Information Networks

arXiv.org Artificial Intelligence

Diversity is a concept relevant to numerous domains of research varying from ecology, to information theory, and to economics, to cite a few. It is a notion that is steadily gaining attention in the information retrieval, network analysis, and artificial neural networks communities. While the use of diversity measures in network-structured data counts a growing number of applications, no clear and comprehensive description is available for the different ways in which diversities can be measured. In this article, we develop a formal framework for the application of a large family of diversity measures to heterogeneous information networks (HINs), a flexible, widely-used network data formalism. This extends the application of diversity measures, from systems of classifications and apportionments, to more complex relations that can be better modeled by networks. In doing so, we not only provide an effective organization of multiple practices from different domains, but also unearth new observables in systems modeled by heterogeneous information networks. We illustrate the pertinence of our approach by developing different applications related to various domains concerned by both diversity and networks. In particular, we illustrate the usefulness of these new proposed observables in the domains of recommender systems and social media studies, among other fields.