Collaborating Authors


Aleatoric Description Logic for Probailistic Reasoning (Long Version) Artificial Intelligence

Description logics are a powerful tool for describing ontological knowledge bases. That is, they give a factual account of the world in terms of individuals, concepts and relations. In the presence of uncertainty, such factual accounts are not feasible, and a subjective or epistemic approach is required. Aleatoric description logic models uncertainty in the world as aleatoric events, by the roll of the dice, where an agent has subjective beliefs about the bias of these dice. This provides a subjective Bayesian description logic, where propositions and relations are assigned probabilities according to what a rational agent would bet, given a configuration of possible individuals and dice. Aleatoric description logic is shown to generalise the description logic ALC, and can be seen to describe a probability space of interpretations of a restriction of ALC where all roles are functions. Several computational problems are considered and model-checking and consistency checking algorithms are presented. Finally, aleatoric description logic is shown to be able to model learning, where agents are able to condition their beliefs on the bias of dice according to observations.

A Rational Entailment for Expressive Description Logics via Description Logic Programs Artificial Intelligence

Lehmann and Magidor's rational closure is acknowledged as a landmark in the field of non-monotonic logics and it has also been re-formulated in the context of Description Logics (DLs). We show here how to model a rational form of entailment for expressive DLs, such as SROIQ, providing a novel reasoning procedure that compiles a non-monotone DL knowledge base into a description logic program (dl-program).

Learning Description Logic Ontologies. Five Approaches. Where Do They Stand? Artificial Intelligence

The quest for acquiring a formal representation of the knowledge of a domain of interest has attracted researchers with various backgrounds into a diverse field called ontology learning. We highlight classical machine learning and data mining approaches that have been proposed for (semi-)automating the creation of description logic (DL) ontologies. These are based on association rule mining, formal concept analysis, inductive logic programming, computational learning theory, and neural networks. We provide an overview of each approach and how it has been adapted for dealing with DL ontologies. Finally, we discuss the benefits and limitations of each of them for learning DL ontologies.

On Finite and Unrestricted Query Entailment beyond SQ with Number Restrictions on Transitive Roles Artificial Intelligence

We study the description logic SQ with number restrictions applicable to transitive roles, extended with either nominals or inverse roles. We show tight 2EXPTIME upper bounds for unrestricted entailment of regular path queries for both extensions and finite entailment of positive existential queries for nominals. For inverses, we establish 2EXPTIME-completeness for unrestricted and finite entailment of instance queries (the latter under restriction to a single, transitive role).

Separating Positive and Negative Data Examples by Concepts and Formulas: The Case of Restricted Signatures Artificial Intelligence

We study the separation of positive and negative data examples in terms of description logic (DL) concepts and formulas of decidable FO fragments, in the presence of an ontology. In contrast to previous work, we add a signature that specifies a subset of the symbols from the data and ontology that can be used for separation. We consider weak and strong versions of the resulting problem that differ in how the negative examples are treated. Our main results are that (a projective form of) the weak version is decidable in $\mathcal{ALCI}$ while it is undecidable in the guarded fragment GF, the guarded negation fragment GNF, and the DL $\mathcal{ALCFIO}$, and that strong separability is decidable in $\mathcal{ALCI}$, GF, and GNF. We also provide (mostly tight) complexity bounds.

Satisfiability and Query Answering in Description Logics with Global and Local Cardinality Constraints Artificial Intelligence

We introduce and investigate the expressive description logic (DL) ALCSCC++, in which the global and local cardinality constraints introduced in previous papers can be mixed. On the one hand, we prove that this does not increase the complexity of satisfiability checking and other standard inference problems. On the other hand, the satisfiability problem becomes undecidable if inverse roles are added to the languages. In addition, even without inverse roles, conjunctive query entailment in this DL turns out to be undecidable. We prove that decidability of querying can be regained if global and local constraints are not mixed and the global constraints are appropriately restricted. The latter result is based on a locally-acyclic model construction, and it reduces query entailment to ABox consistency in the restricted setting, i.e., to ABox consistency w.r.t. restricted cardinality constraints in ALCSCC, for which we can show an ExpTime upper bound.

Theoretical Foundations of Defeasible Description Logics Artificial Intelligence

We extend description logics (DLs) with non-monotonic reasoning features. We start by investigating a notion of defeasible subsumption in the spirit of defeasible conditionals as studied by Kraus, Lehmann and Magidor in the propositional case. In particular, we consider a natural and intuitive semantics for defeasible subsumption, and investigate KLM-style syntactic properties for both preferential and rational subsumption. Our contribution includes two representation results linking our semantic constructions to the set of preferential and rational properties considered. Besides showing that our semantics is appropriate, these results pave the way for more effective decision procedures for defeasible reasoning in DLs. Indeed, we also analyse the problem of non-monotonic reasoning in DLs at the level of entailment and present an algorithm for the computation of rational closure of a defeasible ontology. Importantly, our algorithm relies completely on classical entailment and shows that the computational complexity of reasoning over defeasible ontologies is no worse than that of reasoning in the underlying classical DL ALC.

Consequence-Based Reasoning for Description Logics with Disjunctions and Number Restrictions

Journal of Artificial Intelligence Research

Classification of description logic (DL) ontologies is a key computational problem in modern data management applications, so considerable effort has been devoted to the development and optimisation of practical reasoning calculi. Consequence-based calculi combine ideas from hypertableau and resolution in a way that has proved very effective in practice. However, existing consequence-based calculi can handle either Horn DLs (which do not support disjunction) or DLs without number restrictions. In this paper, we overcome this important limitation and present the first consequence-based calculus for deciding concept subsumption in the DL ALCHIQ+. Our calculus runs in exponential time assuming unary coding of numbers, and on ELH ontologies it runs in polynomial time. The extension to disjunctions and number restrictions is technically involved: we capture the relevant consequences using first-order clauses, and our inference rules adapt paramodulation techniques from first-order theorem proving. By using a well-known preprocessing step, the calculus can also decide concept subsumptions in SRIQ---a rich DL that covers all features of OWL 2 DL apart from nominals and datatypes. We have implemented our calculus in a new reasoner called Sequoia. We present the architecture of our reasoner and discuss several novel and important implementation techniques such as clause indexing and redundancy elimination. Finally, we present the results of an extensive performance evaluation, which revealed Sequoia to be competitive with existing reasoners. Thus, the calculus and the techniques we present in this paper provide an important addition to the repertoire of practical implementation techniques for description logic reasoning.

A Description Logic Framework for Commonsense Conceptual Combination Integrating Typicality, Probabilities and Cognitive Heuristics Artificial Intelligence

We propose a nonmonotonic Description Logic of typicality able to account for the phenomenon of concept combination of prototypical concepts. The proposed logic relies on the logic of typicality ALC TR, whose semantics is based on the notion of rational closure, as well as on the distributed semantics of probabilistic Description Logics, and is equipped with a cognitive heuristic used by humans for concept composition. We first extend the logic of typicality ALC TR by typicality inclusions whose intuitive meaning is that "there is probability p about the fact that typical Cs are Ds". As in the distributed semantics, we define different scenarios containing only some typicality inclusions, each one having a suitable probability. We then focus on those scenarios whose probabilities belong to a given and fixed range, and we exploit such scenarios in order to ascribe typical properties to a concept C obtained as the combination of two prototypical concepts. We also show that reasoning in the proposed Description Logic is EXPTIME-complete as for the underlying ALC.

Probabilistic DL Reasoning with Pinpointing Formulas: A Prolog-based Approach Artificial Intelligence

When modeling real world domains we have to deal with information that is incomplete or that comes from sources with different trust levels. This motivates the need for managing uncertainty in the Semantic Web. To this purpose, we introduced a probabilistic semantics, named DISPONTE, in order to combine description logics with probability theory. The probability of a query can be then computed from the set of its explanations by building a Binary Decision Diagram (BDD). The set of explanations can be found using the tableau algorithm, which has to handle non-determinism. Prolog, with its efficient handling of non-determinism, is suitable for implementing the tableau algorithm. TRILL and TRILLP are systems offering a Prolog implementation of the tableau algorithm. TRILLP builds a pinpointing formula, that compactly represents the set of explanations and can be directly translated into a BDD. Both reasoners were shown to outperform state-of-the-art DL reasoners. In this paper, we present an improvement of TRILLP, named TORNADO, in which the BDD is directly built during the construction of the tableau, further speeding up the overall inference process. An experimental comparison shows the effectiveness of TORNADO. All systems can be tried online in the TRILL on SWISH web application at