Goto

Collaborating Authors

Automatic Programming


The Launch of GitLab 13.1: Automated DevOps Management & QC Filters

#artificialintelligence

The world's most powerful web-based DevOps lifecycle tool GitLab has released GitLab 13.1 to track coding quality and to stay compliant with the dynamic needs of the DevOps world. GitLab 13.1 is now officially available with extended Alert Management and Automated Coding Reporting features. Those who follow GitLab closely would agree that its acquisition of Gemnasium in 2018 has helped further fortify the security and compliance in open source. The smartest enhancement in GitLab 13.1 is Alert Management; to maintain a record of all application maintenance and to address critical issues in real-time. Simplified Alert Management, Alert Assignments and Slack integration enhance DevOps productivity with faster collaboration and just-in-time principles.


A Survey of Automated Programming Hint Generation -- The HINTS Framework

arXiv.org Artificial Intelligence

Automated tutoring systems offer the flexibility and scalability necessary to facilitate the provision of high quality and universally accessible programming education. In order to realise the full potential of these systems, recent work has proposed a diverse range of techniques for automatically generating hints to assist students with programming exercises. This paper integrates these apparently disparate approaches into a coherent whole. Specifically, it emphasises that all hint techniques can be understood as a series of simpler components with similar properties. Using this insight, it presents a simple framework for describing such techniques, the Hint Iteration by Narrow-down and Transformation Steps (HINTS) framework, and it surveys recent work in the context of this framework. It discusses important implications of the survey and framework, including the need to further develop evaluation methods and the importance of considering hint technique components when designing, communicating and evaluating hint systems. Ultimately, this paper is designed to facilitate future opportunities for the development, extension and comparison of automated programming hint techniques in order to maximise their educational potential.


Collaboration key to leveraging AI and machine learning in financial advice

#artificialintelligence

Greater collaboration across the Australian financial services industry is required in order to help financial advisers leverage the full potential of artificial intelligence and machine-learning technology, according to education provider Kaplan Professional and regtech pioneer Red Marker. Matt Symons, Red Marker CEO, said there needs to be a mindset change in how AI and machine-learning tools can best assist the industry. "It is important both dealer groups and vendors progress with realistic expectations, particularly around the'pre-work' that needs to be done to ensure financial advice can become an ideal candidate for automated solutions," Symons said. "If the financial services industry wants to increase the likelihood that effective statement of advice (SoA) review solutions emerge at a faster rate, then we need to come together and collaborate... working together is going to be key to developing highly reliable, automated review solutions." The two organisations said that before the industry could leverage AI and machine learning in financial advice, existing pre-conditions needed to be in place, including managing expectations, recognising the limitations in training data, and resolving diverging approaches to SoA construction, automatic programming language, and product comparison logic.


1592

AI Magazine

AR&A techniques have been used to solve a variety of tasks, including automatic programming, constraint satisfaction, design, diagnosis, machine learning, search, planning, reasoning, game playing, scheduling, and theorem proving. The primary purpose of AR&A techniques in such settings is to overcome computational intractability. In addition, AR&A techniques are useful for accelerating learning and summarizing sets of solutions. The Fifth Symposium on Abstraction, Reformulation, and Approximation (SARA-2002) was held from 2 to 4 August 2002, directly after the Eighteenth National Conference on Artificial Intelligence (AAAI-2002). It was chaired by Sven Koenig from the Georgia Institute of Technology and Robert Holte from the University of Alberta (Canada) and held at Kananaskis Mountain Lodge, Kananaskis Village, Alberta (Canada) between Calgary and Banff in the Rocky Mountains.


A Perspective on Automatic Programming

AI Magazine

Most work in automatic programming has focused primarily on the roles of deduction and programming knowledge However, the role played by knowledge of the task domain seems to be at least as important, both for the usability of an automatic programming system and for the feasibility of building one which works on nontrivial problems This perspective has evolved during the course of a variety of studies over the last several years, including detailed examination of existing software for a particular domain (quantitative interpretation of oil well logs) and the implementation of an experimental automatic programming system for that domain The importance of domain knowledge has two important implications: a primary goal of automatic programming research should be to characterize the programming process for specific domains; and a crucial issue to be addressed in these characterizations is the interaction of domain and programming knowledge during program synthesis Used by permission of the International Joint Conferences on Artificial Intelligence; copies of the Proceedings are available from William Kaufmann, Inc, 95 First St., Los Altos, CA 94022 USA. For example, the work of Green (1969) and Waldinger and Lee (1969) in the late 1960s was concerned with the use of a theorem-prover to produce programs. This deductive paradigm continues to be the basis for much research in automatic programming (e.g., Manna & Waldinger 1980, Smith 1983). In the mid 1970's, work on the PSI project (Barstow 1979, Green 1977, Kant 1981) and on the Programmer's Apprentice (Rich 1981) was fundamentally concerned with the codification of knowledge about programming techniques and the use of that knowledge in program synthesis and analysis Work within the knowledge-based paradigm is also continuing (e.g., Barstow 1982, Waters 1981). This article is concerned with the role played by knowledge of the task domain, a role which seems to be at least as important.


Automatic Programming

AITopics Original Links

Our approach to automatic programming is based on reuse of generic algorithms through views. A generic algorithm performs some task, such as sorting a linked list of records, based on abstract descriptions of the data on which the program operates. A view describes how actual application data corresponds to the abstract data as used in the generic algorithm. Given a view, a generic algorithm can be specialized by a compilation process to produce a version of the algorithm that performs the algorithm directly on the application data.


CS 394P: Automatic Programming

AITopics Original Links

The course consists of lectures for the first two-thirds of the semester. Homework problems and programming assignments illustrate the lecture material. The programs are not long; the intent is to gain some exposure to several kinds of programming systems. The latter part of the semester covers readings in the research literature; students are expected to present one or two papers to the class. Many of the world's best researchers in automatic programming are in Austin: Jim Browne, Don Batory, Elaine Kant, Ira Baxter, Ted Biggerstaff; they will be invited to present guest lectures to describe their work.


AI-Lab - Automatic Programming

AITopics Original Links

Our goal is automatic generation of computer programs from specifications that are much smaller and easier to write than ordinary programs. Generation of geometric programs specified by diagrams 2011 Yulin Li and Gordon S. Novak, Jr., In Proceedings of the 10th ACM international conference on Generative programming and component engineering, pp.


William A. Martin

AITopics Original Links

Professor Martin, whose main interest was in the practical application of artificial intelligence, was associated with the Laboratory for Computer Science and the Artificial Intelligence Laboratory at MIT. His work involved computer programs that embody various forms of expertise---mathematical, medical, management or linguistic---and the application of this expertise to practical ends. His system for symbolic mathematics is now used around the country by a large community of scientists. Professor Martin's interest in mangagement led him to the development of automatic programming techniques that are widely used.


Automatic Programming Assessments

#artificialintelligence

The industry today is on a constant look-out for good programmers. In this new age of digital services and products, it's a premium to possess programming skills. Whenever a friend asks me to refer a good programmer for his company, I tell him -- why would I refer to you, I will hire her for my team! But what does having programming skills really mean? What do we look for when we hire programmers?