Collaborating Authors


Active Learning for Product Type Ontology Enhancement in E-commerce Artificial Intelligence

Entity-based semantic search has been widely adopted in modern search engines to improve search accuracy by understanding users' intent. In e-commerce, an accurate and complete product type (PT) ontology is essential for recognizing product entities in queries and retrieving relevant products from catalog. However, finding product types (PTs) to construct such an ontology is usually expensive due to the considerable amount of human efforts it may involve. In this work, we propose an active learning framework that efficiently utilizes domain experts' knowledge for PT discovery. We also show the quality and coverage of the resulting PTs in the experiment results.

Large-Scale Intelligent Microservices Artificial Intelligence

Deploying Machine Learning (ML) algorithms within databases is a challenge due to the varied computational footprints of modern ML algorithms and the myriad of database technologies each with their own restrictive syntax. We introduce an Apache Spark-based micro-service orchestration framework that extends database operations to include web service primitives. Our system can orchestrate web services across hundreds of machines and takes full advantage of cluster, thread, and asynchronous parallelism. Using this framework, we provide large scale clients for intelligent services such as speech, vision, search, anomaly detection, and text analysis. This allows users to integrate ready-to-use intelligence into any datastore with an Apache Spark connector. To eliminate the majority of overhead from network communication, we also introduce a low-latency containerized version of our architecture. Finally, we demonstrate that the services we investigate are competitive on a variety of benchmarks, and present two applications of this framework to create intelligent search engines, and real time auto race analytics systems.

Formalizing Integration Patterns with Multimedia Data (Extended Version) Artificial Intelligence

The previous works on formalizing enterprise application integration (EAI) scenarios showed an emerging need for setting up formal foundations for integration patterns, the EAI building blocks, in order to facilitate the model-driven development and ensure its correctness. So far, the formalization requirements were focusing on more "conventional" integration scenarios, in which control-flow, transactional persistent data and time aspects were considered. However, none of these works took into consideration another arising EAI trend that covers social and multimedia computing. In this work we propose a Petri net-based formalism that addresses requirements arising from the multimedia domain. We also demonstrate realizations of one of the most frequently used multimedia patterns and discuss which implications our formal proposal may bring into the area of the multimedia EAI development.

The Semantic Zoo - Smart Data Hubs, Knowledge Graphs and Data Catalogs


Sometimes, you can enter into a technology too early. The groundwork for semantics was laid down in the late 1990s and early 2000s, with Tim Berners-Lee's stellar Semantic Web article, debuting in Scientific American in 2004, seen by many as the movement's birth. Yet many early participants in the field of semantics discovered a harsh reality: computer systems were too slow to handle the intense indexing requirements the technology needed, the original specifications and APIs failed to handle important edge cases, and, perhaps most importantly, the number of real world use cases where semantics made sense were simply not at a large enough scope; they could easily be met by existing approaches and technology. Semantics faded around 2008, echoing the pattern of the Artificial Intelligence Winter of the 1970s. JSON was all the rage, then mobile apps, big data came on the scene even as Javascript underwent a radical transformation, and all of a sudden everyone wanted to be a data scientist (until they discovered the fact that data science was mostly math).

Graph integration of structured, semistructured and unstructured data for data journalism Artificial Intelligence

Nowadays, journalism is facilitated by the existence of large amounts of digital data sources, including many Open Data ones. Such data sources are extremely heterogeneous, ranging from highly struc-tured (relational databases), semi-structured (JSON, XML, HTML), graphs (e.g., RDF), and text. Journalists (and other classes of users lacking advanced IT expertise, such as most non-governmental-organizations, or small public administrations) need to be able to make sense of such heterogeneous corpora, even if they lack the ability to de ne and deploy custom extract-transform-load work ows. These are di cult to set up not only for arbitrary heterogeneous inputs , but also given that users may want to add (or remove) datasets to (from) the corpus. We describe a complete approach for integrating dynamic sets of heterogeneous data sources along the lines described above: the challenges we faced to make such graphs useful, allow their integration to scale, and the solutions we proposed for these problems. Our approach is implemented within the ConnectionLens system; we validate it through a set of experiments.

An Empirical Meta-analysis of the Life Sciences (Linked?) Open Data on the Web Artificial Intelligence

While the biomedical community has published several "open data" sources in the last decade, most researchers still endure severe logistical and technical challenges to discover, query, and integrate heterogeneous data and knowledge from multiple sources. To tackle these challenges, the community has experimented with Semantic Web and linked data technologies to create the Life Sciences Linked Open Data (LSLOD) cloud. In this paper, we extract schemas from more than 80 publicly available biomedical linked data graphs into an LSLOD schema graph and conduct an empirical meta-analysis to evaluate the extent of semantic heterogeneity across the LSLOD cloud. We observe that several LSLOD sources exist as stand-alone data sources that are not inter-linked with other sources, use unpublished schemas with minimal reuse or mappings, and have elements that are not useful for data integration from a biomedical perspective. We envision that the LSLOD schema graph and the findings from this research will aid researchers who wish to query and integrate data and knowledge from multiple biomedical sources simultaneously on the Web.

An Unsupervised Semantic Sentence Ranking Scheme for Text Documents Machine Learning

This paper presents Semantic SentenceRank (SSR), an unsupervised scheme for automatically ranking sentences in a single document according to their relative importance. In particular, SSR extracts essential words and phrases from a text document, and uses semantic measures to construct, respectively, a semantic phrase graph over phrases and words, and a semantic sentence graph over sentences. It applies two variants of article-structure-biased PageRank to score phrases and words on the first graph and sentences on the second graph. It then combines these scores to generate the final score for each sentence. Finally, SSR solves a multi-objective optimization problem for ranking sentences based on their final scores and topic diversity through semantic subtopic clustering. An implementation of SSR that runs in quadratic time is presented, and it outperforms, on the SummBank benchmarks, each individual judge's ranking and compares favorably with the combined ranking of all judges.

Open Knowledge Enrichment for Long-tail Entities Artificial Intelligence

Knowledge bases (KBs) have gradually become a valuable asset for many AI applications. While many current KBs are quite large, they are widely acknowledged as incomplete, especially lacking facts of long-tail entities, e.g., less famous persons. Existing approaches enrich KBs mainly on completing missing links or filling missing values. However, they only tackle a part of the enrichment problem and lack specific considerations regarding long-tail entities. In this paper, we propose a full-fledged approach to knowledge enrichment, which predicts missing properties and infers true facts of long-tail entities from the open Web. Prior knowledge from popular entities is leveraged to improve every enrichment step. Our experiments on the synthetic and real-world datasets and comparison with related work demonstrate the feasibility and superiority of the approach.

AGATHA: Automatic Graph-mining And Transformer based Hypothesis generation Approach Machine Learning

Medical research is risky and expensive. Drug discovery, as an example, requires that researchers efficiently winnow thousands of potential targets to a small candidate set for more thorough evaluation. However, research groups spend significant time and money to perform the experiments necessary to determine this candidate set long before seeing intermediate results. Hypothesis generation systems address this challenge by mining the wealth of publicly available scientific information to predict plausible research directions. We present AGATHA, a deep-learning hypothesis generation system that can introduce data-driven insights earlier in the discovery process. Through a learned ranking criteria, this system quickly prioritizes plausible term-pairs among entity sets, allowing us to recommend new research directions. We massively validate our system with a temporal holdout wherein we predict connections first introduced after 2015 using data published beforehand. We additionally explore biomedical sub-domains, and demonstrate AGATHA's predictive capacity across the twenty most popular relationship types. This system achieves best-in-class performance on an established benchmark, and demonstrates high recommendation scores across subdomains. Reproducibility: All code, experimental data, and pre-trained models are available online:

Eliminating Search Intent Bias in Learning to Rank Machine Learning

Click-through data has proven to be a valuable resource for improving search-ranking quality. Search engines can easily collect click data, but biases introduced in the data can make it difficult to use the data effectively. In order to measure the effects of biases, many click models have been proposed in the literature. However, none of the models can explain the observation that users with different search intent (e.g., informational, navigational, etc.) have different click behaviors. In this paper, we study how differences in user search intent can influence click activities and determined that there exists a bias between user search intent and the relevance of the document relevance. Based on this observation, we propose a search intent bias hypothesis that can be applied to most existing click models to improve their ability to learn unbiased relevance. Experimental results demonstrate that after adopting the search intent hypothesis, click models can better interpret user clicks and substantially improve retrieval performance.