Goto

Collaborating Authors

Results


Finetuning Transformer Models to Build ASAG System

arXiv.org Artificial Intelligence

Research towards creating systems for automatic grading of student answers to quiz and exam questions in educational settings has been ongoing since 1966. Over the years, the problem was divided into many categories. Among them, grading text answers were divided into short answer grading, and essay grading. The goal of this work was to develop an ML-based short answer grading system. I hence built a system which uses finetuning on Roberta Large Model pretrained on STS benchmark dataset and have also created an interface to show the production readiness of the system. I evaluated the performance of the system on the Mohler extended dataset and SciEntsBank Dataset. The developed system achieved a Pearsons Correlation of 0.82 and RMSE of 0.7 on the Mohler Dataset which beats the SOTA performance on this dataset which is correlation of 0.805 and RMSE of 0.793. Additionally, Pearsons Correlation of 0.79 and RMSE of 0.56 was achieved on the SciEntsBank Dataset, which only reconfirms the robustness of the system. A few observations during achieving these results included usage of batch size of 1 produced better results than using batch size of 16 or 32 and using huber loss as loss function performed well on this regression task. The system was tried and tested on train and validation splits using various random seeds and still has been tweaked to achieve a minimum of 0.76 of correlation and a maximum 0.15 (out of 1) RMSE on any dataset.


Multi-Task Learning in Natural Language Processing: An Overview

arXiv.org Artificial Intelligence

Deep learning approaches have achieved great success in the field of Natural Language Processing (NLP). However, deep neural models often suffer from overfitting and data scarcity problems that are pervasive in NLP tasks. In recent years, Multi-Task Learning (MTL), which can leverage useful information of related tasks to achieve simultaneous performance improvement on multiple related tasks, has been used to handle these problems. In this paper, we give an overview of the use of MTL in NLP tasks. We first review MTL architectures used in NLP tasks and categorize them into four classes, including the parallel architecture, hierarchical architecture, modular architecture, and generative adversarial architecture. Then we present optimization techniques on loss construction, data sampling, and task scheduling to properly train a multi-task model. After presenting applications of MTL in a variety of NLP tasks, we introduce some benchmark datasets. Finally, we make a conclusion and discuss several possible research directions in this field.


A Survey on Temporal Sentence Grounding in Videos

arXiv.org Artificial Intelligence

Temporal sentence grounding in videos(TSGV), which aims to localize one target segment from an untrimmed video with respect to a given sentence query, has drawn increasing attentions in the research community over the past few years. Different from the task of temporal action localization, TSGV is more flexible since it can locate complicated activities via natural languages, without restrictions from predefined action categories. Meanwhile, TSGV is more challenging since it requires both textual and visual understanding for semantic alignment between two modalities(i.e., text and video). In this survey, we give a comprehensive overview for TSGV, which i) summarizes the taxonomy of existing methods, ii) provides a detailed description of the evaluation protocols(i.e., datasets and metrics) to be used in TSGV, and iii) in-depth discusses potential problems of current benchmarking designs and research directions for further investigations. To the best of our knowledge, this is the first systematic survey on temporal sentence grounding. More specifically, we first discuss existing TSGV approaches by grouping them into four categories, i.e., two-stage methods, end-to-end methods, reinforcement learning-based methods, and weakly supervised methods. Then we present the benchmark datasets and evaluation metrics to assess current research progress. Finally, we discuss some limitations in TSGV through pointing out potential problems improperly resolved in the current evaluation protocols, which may push forwards more cutting edge research in TSGV. Besides, we also share our insights on several promising directions, including three typical tasks with new and practical settings based on TSGV.


Sequential Modelling with Applications to Music Recommendation, Fact-Checking, and Speed Reading

arXiv.org Artificial Intelligence

Sequential modelling entails making sense of sequential data, which naturally occurs in a wide array of domains. One example is systems that interact with users, log user actions and behaviour, and make recommendations of items of potential interest to users on the basis of their previous interactions. In such cases, the sequential order of user interactions is often indicative of what the user is interested in next. Similarly, for systems that automatically infer the semantics of text, capturing the sequential order of words in a sentence is essential, as even a slight re-ordering could significantly alter its original meaning. This thesis makes methodological contributions and new investigations of sequential modelling for the specific application areas of systems that recommend music tracks to listeners and systems that process text semantics in order to automatically fact-check claims, or "speed read" text for efficient further classification.


Representation Learning for Efficient and Effective Similarity Search and Recommendation

arXiv.org Artificial Intelligence

How data is represented and operationalized is critical for building computational solutions that are both effective and efficient. A common approach is to represent data objects as binary vectors, denoted \textit{hash codes}, which require little storage and enable efficient similarity search through direct indexing into a hash table or through similarity computations in an appropriate space. Due to the limited expressibility of hash codes, compared to real-valued representations, a core open challenge is how to generate hash codes that well capture semantic content or latent properties using a small number of bits, while ensuring that the hash codes are distributed in a way that does not reduce their search efficiency. State of the art methods use representation learning for generating such hash codes, focusing on neural autoencoder architectures where semantics are encoded into the hash codes by learning to reconstruct the original inputs of the hash codes. This thesis addresses the above challenge and makes a number of contributions to representation learning that (i) improve effectiveness of hash codes through more expressive representations and a more effective similarity measure than the current state of the art, namely the Hamming distance, and (ii) improve efficiency of hash codes by learning representations that are especially suited to the choice of search method. The contributions are empirically validated on several tasks related to similarity search and recommendation.


An Exploratory Study on Utilising the Web of Linked Data for Product Data Mining

arXiv.org Artificial Intelligence

The Linked Open Data practice has led to a significant growth of structured data on the Web in the last decade. Such structured data describe real-world entities in a machine-readable way, and have created an unprecedented opportunity for research in the field of Natural Language Processing. However, there is a lack of studies on how such data can be used, for what kind of tasks, and to what extent they can be useful for these tasks. This work focuses on the e-commerce domain to explore methods of utilising such structured data to create language resources that may be used for product classification and linking. We process billions of structured data points in the form of RDF n-quads, to create multi-million words of product-related corpora that are later used in three different ways for creating of language resources: training word embedding models, continued pre-training of BERT-like language models, and training Machine Translation models that are used as a proxy to generate product-related keywords. Our evaluation on an extensive set of benchmarks shows word embeddings to be the most reliable and consistent method to improve the accuracy on both tasks (with up to 6.9 percentage points in macro-average F1 on some datasets). The other two methods however, are not as useful. Our analysis shows that this could be due to a number of reasons, including the biased domain representation in the structured data and lack of vocabulary coverage. We share our datasets and discuss how our lessons learned could be taken forward to inform future research in this direction.


Semantic-Preserving Adversarial Text Attacks

arXiv.org Machine Learning

Deep neural networks (DNNs) are known to be vulnerable to adversarial images, while their robustness in text classification is rarely studied. Several lines of text attack methods have been proposed in the literature, including character-level, word-level, and sentence-level attacks. However, it is still a challenge to minimize the number of word changes necessary to induce misclassification, while simultaneously ensuring lexical correctness, syntactic soundness, and semantic similarity. In this paper, we propose a Bigram and Unigram based adaptive Semantic Preservation Optimization (BU-SPO) method to examine the vulnerability of deep models. Our method has four major merits. Firstly, we propose to attack text documents not only at the unigram word level but also at the bigram level which better keeps semantics and avoids producing meaningless outputs. Secondly, we propose a hybrid method to replace the input words with options among both their synonyms candidates and sememe candidates, which greatly enriches the potential substitutions compared to only using synonyms. Thirdly, we design an optimization algorithm, i.e., Semantic Preservation Optimization (SPO), to determine the priority of word replacements, aiming to reduce the modification cost. Finally, we further improve the SPO with a semantic Filter (named SPOF) to find the adversarial example with the highest semantic similarity. We evaluate the effectiveness of our BU-SPO and BU-SPOF on IMDB, AG's News, and Yahoo! Answers text datasets by attacking four popular DNNs models. Results show that our methods achieve the highest attack success rates and semantics rates by changing the smallest number of words compared with existing methods.


Towards Personalized and Human-in-the-Loop Document Summarization

arXiv.org Artificial Intelligence

The ubiquitous availability of computing devices and the widespread use of the internet have generated a large amount of data continuously. Therefore, the amount of available information on any given topic is far beyond humans' processing capacity to properly process, causing what is known as information overload. To efficiently cope with large amounts of information and generate content with significant value to users, we require identifying, merging and summarising information. Data summaries can help gather related information and collect it into a shorter format that enables answering complicated questions, gaining new insight and discovering conceptual boundaries. This thesis focuses on three main challenges to alleviate information overload using novel summarisation techniques. It further intends to facilitate the analysis of documents to support personalised information extraction. This thesis separates the research issues into four areas, covering (i) feature engineering in document summarisation, (ii) traditional static and inflexible summaries, (iii) traditional generic summarisation approaches, and (iv) the need for reference summaries. We propose novel approaches to tackle these challenges, by: i)enabling automatic intelligent feature engineering, ii) enabling flexible and interactive summarisation, iii) utilising intelligent and personalised summarisation approaches. The experimental results prove the efficiency of the proposed approaches compared to other state-of-the-art models. We further propose solutions to the information overload problem in different domains through summarisation, covering network traffic data, health data and business process data.


On the Opportunities and Risks of Foundation Models

arXiv.org Artificial Intelligence

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.


Screen2Words: Automatic Mobile UI Summarization with Multimodal Learning

arXiv.org Artificial Intelligence

Mobile User Interface Summarization generates succinct language descriptions of mobile screens for conveying important contents and functionalities of the screen, which can be useful for many language-based application scenarios. We present Screen2Words, a novel screen summarization approach that automatically encapsulates essential information of a UI screen into a coherent language phrase. Summarizing mobile screens requires a holistic understanding of the multi-modal data of mobile UIs, including text, image, structures as well as UI semantics, motivating our multi-modal learning approach. We collected and analyzed a large-scale screen summarization dataset annotated by human workers. Our dataset contains more than 112k language summarization across $\sim$22k unique UI screens. We then experimented with a set of deep models with different configurations. Our evaluation of these models with both automatic accuracy metrics and human rating shows that our approach can generate high-quality summaries for mobile screens. We demonstrate potential use cases of Screen2Words and open-source our dataset and model to lay the foundations for further bridging language and user interfaces.