Goto

Collaborating Authors

Results


Natural Language Processing in-and-for Design Research

arXiv.org Artificial Intelligence

We review the scholarly contributions that utilise Natural Language Processing (NLP) methods to support the design process. Using a heuristic approach, we collected 223 articles published in 32 journals and within the period 1991-present. We present state-of-the-art NLP in-and-for design research by reviewing these articles according to the type of natural language text sources: internal reports, design concepts, discourse transcripts, technical publications, consumer opinions, and others. Upon summarizing and identifying the gaps in these contributions, we utilise an existing design innovation framework to identify the applications that are currently being supported by NLP. We then propose a few methodological and theoretical directions for future NLP in-and-for design research.


CLLD: Contrastive Learning with Label Distance for Text Classificatioin

arXiv.org Artificial Intelligence

Existed pre-trained models have achieved state-of-the-art performance on various text classification tasks. These models have proven to be useful in learning universal language representations. However, the semantic discrepancy between similar texts cannot be effectively distinguished by advanced pre-trained models, which have a great influence on the performance of hard-to-distinguish classes. To address this problem, we propose a novel Contrastive Learning with Label Distance (CLLD) in this work. Inspired by recent advances in contrastive learning, we specifically design a classification method with label distance for learning contrastive classes. CLLD ensures the flexibility within the subtle differences that lead to different label assignments, and generates the distinct representations for each class having similarity simultaneously. Extensive experiments on public benchmarks and internal datasets demonstrate that our method improves the performance of pre-trained models on classification tasks. Importantly, our experiments suggest that the learned label distance relieve the adversarial nature of interclasses.


A Survey on Data Augmentation for Text Classification

arXiv.org Artificial Intelligence

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).


Neural Natural Language Processing for Unstructured Data in Electronic Health Records: a Review

arXiv.org Artificial Intelligence

Electronic health records (EHRs), digital collections of patient healthcare events and observations, are ubiquitous in medicine and critical to healthcare delivery, operations, and research. Despite this central role, EHRs are notoriously difficult to process automatically. Well over half of the information stored within EHRs is in the form of unstructured text (e.g. provider notes, operation reports) and remains largely untapped for secondary use. Recently, however, newer neural network and deep learning approaches to Natural Language Processing (NLP) have made considerable advances, outperforming traditional statistical and rule-based systems on a variety of tasks. In this survey paper, we summarize current neural NLP methods for EHR applications. We focus on a broad scope of tasks, namely, classification and prediction, word embeddings, extraction, generation, and other topics such as question answering, phenotyping, knowledge graphs, medical dialogue, multilinguality, interpretability, etc.


Cooking Is All About People: Comment Classification On Cookery Channels Using BERT and Classification Models (Malayalam-English Mix-Code)

arXiv.org Machine Learning

The scope of a lucrative career promoted by Google through its video distribution platform YouTube has attracted a large number of users to become content creators. An important aspect of this line of work is the feedback received in the form of comments which show how well the content is being received by the audience. However, volume of comments coupled with spam and limited tools for comment classification makes it virtually impossible for a creator to go through each and every comment and gather constructive feedback. Automatic classification of comments is a challenge even for established classification models, since comments are often of variable lengths riddled with slang, symbols and abbreviations. This is a greater challenge where comments are multilingual as the messages are often rife with the respective vernacular. In this work, we have evaluated top-performing classification models for classifying comments which are a mix of different combinations of English and Malayalam (only English, only Malayalam and Mix of English and Malayalam). The statistical analysis of results indicates that Multinomial Naive Bayes, K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Random Forest and Decision Trees offer similar level of accuracy in comment classification. Further, we have also evaluated 3 multilingual transformer based language models (BERT, DISTILBERT and XLM) and compared their performance to the traditional machine learning classification techniques. XLM was the top-performing BERT model with an accuracy of 67.31. Random Forest with Term Frequency Vectorizer was the best performing model out of all the traditional classification models with an accuracy of 63.59.


Word-Class Embeddings for Multiclass Text Classification

arXiv.org Machine Learning

Pre-trained word embeddings encode general word semantics and lexical regularities of natural language, and have proven useful across many NLP tasks, including word sense disambiguation, machine translation, and sentiment analysis, to name a few. In supervised tasks such as multiclass text classification (the focus of this article) it seems appealing to enhance word representations with ad-hoc embeddings that encode task-specific information. We propose (supervised) word-class embeddings (WCEs), and show that, when concatenated to (unsupervised) pre-trained word embeddings, they substantially facilitate the training of deep-learning models in multiclass classification by topic. We show empirical evidence that WCEs yield a consistent improvement in multiclass classification accuracy, using four popular neural architectures and six widely used and publicly available datasets for multiclass text classification. Our code that implements WCEs is publicly available at https://github.com/AlexMoreo/word-class-embeddings


Advances in Machine Learning for the Behavioral Sciences

arXiv.org Machine Learning

The areas of machine learning and knowledge discovery in databases have considerably matured in recent years. In this article, we briefly review recent developments as well as classical algorithms that stood the test of time. Our goal is to provide a general introduction into different tasks such as learning from tabular data, behavioral data, or textual data, with a particular focus on actual and potential applications in behavioral sciences. The supplemental appendix to the article also provides practical guidance for using the methods by pointing the reader to proven software implementations. The focus is on R, but we also cover some libraries in other programming languages as well as systems with easy-to-use graphical interfaces.


Hierarchical Taxonomy-Aware and Attentional Graph Capsule RCNNs for Large-Scale Multi-Label Text Classification

arXiv.org Machine Learning

CNNs, RNNs, GCNs, and CapsNets have shown significant insights in representation learning and are widely used in various text mining tasks such as large-scale multi-label text classification. However, most existing deep models for multi-label text classification consider either the non-consecutive and long-distance semantics or the sequential semantics, but how to consider them both coherently is less studied. In addition, most existing methods treat output labels as independent methods, but ignore the hierarchical relations among them, leading to useful semantic information loss. In this paper, we propose a novel hierarchical taxonomy-aware and attentional graph capsule recurrent CNNs framework for large-scale multi-label text classification. Specifically, we first propose to model each document as a word order preserved graph-of-words and normalize it as a corresponding words-matrix representation which preserves both the non-consecutive, long-distance and local sequential semantics. Then the words-matrix is input to the proposed attentional graph capsule recurrent CNNs for more effectively learning the semantic features. To leverage the hierarchical relations among the class labels, we propose a hierarchical taxonomy embedding method to learn their representations, and define a novel weighted margin loss by incorporating the label representation similarity. Extensive evaluations on three datasets show that our model significantly improves the performance of large-scale multi-label text classification by comparing with state-of-the-art approaches.


Machine Learning in Official Statistics

arXiv.org Machine Learning

On 10 October 2017, the development of a Digital Agenda of the Federal Statistical Office of Germany (Destatis) has started (Statistisches Bundesamt 2018). One of many topics that were intensively discussed was Machine Learning. In a meeting at 13-15 November 2017, the office and department heads of Destatis evaluated and prioritised 59 measures of the Digital Agenda according to their benefits and costs. A "Proof of Concept Machine Learning" was given high priority and classified as one of four lighthouse projects of the Digital Agenda. The content specification was "Proof of Concept Machine Learning - Set up Proof of Concept for Machine Learning, e.g. in business statistics, to perform automatic categorization and improve analysis potential". The deadline for completion of the project was set for mid-2018.


Training and Prediction Data Discrepancies: Challenges of Text Classification with Noisy, Historical Data

arXiv.org Machine Learning

Industry datasets used for text classification are rarely created for that purpose. In most cases, the data and target predictions are a by-product of accumulated historical data, typically fraught with noise, present in both the text-based document, as well as in the targeted labels. In this work, we address the question of how well performance metrics computed on noisy, historical data reflect the performance on the intended future machine learning model input. The results demonstrate the utility of dirty training datasets used to build prediction models for cleaner (and different) prediction inputs.