Goto

Collaborating Authors

Machine Translation: Instructional Materials


Multilingual Machine Translation: Deep Analysis of Language-Specific Encoder-Decoders

Journal of Artificial Intelligence Research

State-of-the-art multilingual machine translation relies on a shared encoder-decoder. In this paper, we propose an alternative approach based on language-specific encoder-decoders, which can be easily extended to new languages by learning their corresponding modules. To establish a common interlingua representation, we simultaneously train N initial languages. Our experiments show that the proposed approach improves over the shared encoder-decoder for the initial languages and when adding new languages, without the need to retrain the remaining modules. All in all, our work closes the gap between shared and language-specific encoder-decoders, advancing toward modular multilingual machine translation systems that can be flexibly extended in lifelong learning settings.


Machine Learning Communities: Q1 '22 highlights and achievements

#artificialintelligence

Let's explore highlights and accomplishments of vast Google Machine Learning communities over the first quarter of the year! We are enthusiastic and grateful about all the activities that the communities across the globe do. ML Olympiad is an associated Kaggle Community Competitions hosted by Machine Learning Google Developers Experts (ML GDEs) or TensorFlow User Groups (TFUGs) sponsored by Google. The first round was hosted from January to March, suggesting solving critical problems of our time. TFUG organizer Ali Mustufa Shaikh (TFUG Mumbai) and Rishit Dagli won the TensorFlow Community Spotlight award (paper and code).


Data Distribution Shifts and Monitoring

#artificialintelligence

Note: This note is a work-in-progress, created for the course CS 329S: Machine Learning Systems Design (Stanford, 2022). For the fully developed text, see th...


FedQAS: Privacy-aware machine reading comprehension with federated learning

arXiv.org Artificial Intelligence

Machine reading comprehension (MRC) of text data is one important task in Natural Language Understanding. It is a complex NLP problem with a lot of ongoing research fueled by the release of the Stanford Question Answering Dataset (SQuAD) and Conversational Question Answering (CoQA). It is considered to be an effort to teach computers how to "understand" a text, and then to be able to answer questions about it using deep learning. However, until now large-scale training on private text data and knowledge sharing has been missing for this NLP task. Hence, we present FedQAS, a privacy-preserving machine reading system capable of leveraging large-scale private data without the need to pool those datasets in a central location. The proposed approach combines transformer models and federated learning technologies. The system is developed using the FEDn framework and deployed as a proof-of-concept alliance initiative. FedQAS is flexible, language-agnostic, and allows intuitive participation and execution of local model training. In addition, we present the architecture and implementation of the system, as well as provide a reference evaluation based on the SQUAD dataset, to showcase how it overcomes data privacy issues and enables knowledge sharing between alliance members in a Federated learning setting.


Conversational Agents: Theory and Applications

arXiv.org Artificial Intelligence

In this chapter, we provide a review of conversational agents (CAs), discussing chatbots, intended for casual conversation with a user, as well as task-oriented agents that generally engage in discussions intended to reach one or several specific goals, often (but not always) within a specific domain. We also consider the concept of embodied conversational agents, briefly reviewing aspects such as character animation and speech processing. The many different approaches for representing dialogue in CAs are discussed in some detail, along with methods for evaluating such agents, emphasizing the important topics of accountability and interpretability. A brief historical overview is given, followed by an extensive overview of various applications, especially in the fields of health and education. We end the chapter by discussing benefits and potential risks regarding the societal impact of current and future CA technology.


Cost-Effective Training in Low-Resource Neural Machine Translation

arXiv.org Artificial Intelligence

While Active Learning (AL) techniques are explored in Neural Machine Translation (NMT), only a few works focus on tackling low annotation budgets where a limited number of sentences can get translated. Such situations are especially challenging and can occur for endangered languages with few human annotators or having cost constraints to label large amounts of data. Although AL is shown to be helpful with large budgets, it is not enough to build high-quality translation systems in these low-resource conditions. In this work, we propose a cost-effective training procedure to increase the performance of NMT models utilizing a small number of annotated sentences and dictionary entries. Our method leverages monolingual data with self-supervised objectives and a small-scale, inexpensive dictionary for additional supervision to initialize the NMT model before applying AL. We show that improving the model using a combination of these knowledge sources is essential to exploit AL strategies and increase gains in low-resource conditions. We also present a novel AL strategy inspired by domain adaptation for NMT and show that it is effective for low budgets. We propose a new hybrid data-driven approach, which samples sentences that are diverse from the labelled data and also most similar to unlabelled data. Finally, we show that initializing the NMT model and further using our AL strategy can achieve gains of up to $13$ BLEU compared to conventional AL methods.


Pixel Recursive Super Resolution. Paper @Google Brain. Ryan Dahl, Mohammad Norouzi & Jonathon Shlens

#artificialintelligence

Research ... hoy traemos a este espacio otro paper de Google ... aquí os dejamos el Abstract We present a pixel recursive super resolution model that synthesizes realistic details into images while enhancing their resolution. A low resolution image may correspond to multiple plausible high resolution images, thus modeling the super resolution process with a pixel independent conditional model often results in averaging different details–hence blurry edges. By contrast, our model is able to represent a multimodal conditional distribution by properly modeling the statistical dependencies among the high resolution image pixels, conditioned on a low resolution input. We employ a PixelCNN architecture to define a strong prior over natural images and jointly optimize this prior with a deep conditioning convolutional network. Human evaluations indicate that samples from our proposed model look.(leer


Diformer: Directional Transformer for Neural Machine Translation

arXiv.org Artificial Intelligence

Autoregressive (AR) and Non-autoregressive (NAR) models have their own superiority on the performance and latency, combining them into one model may take advantage of both. Current combination frameworks focus more on the integration of multiple decoding paradigms with a unified generative model, e.g. Masked Language Model. However, the generalization can be harmful to the performance due to the gap between training objective and inference. In this paper, we aim to close the gap by preserving the original objective of AR and NAR under a unified framework. Specifically, we propose the Directional Transformer (Diformer) by jointly modelling AR and NAR into three generation directions (left-to-right, right-to-left and straight) with a newly introduced direction variable, which works by controlling the prediction of each token to have specific dependencies under that direction. The unification achieved by direction successfully preserves the original dependency assumption used in AR and NAR, retaining both generalization and performance. Experiments on 4 WMT benchmarks demonstrate that Diformer outperforms current united-modelling works with more than 1.5 BLEU points for both AR and NAR decoding, and is also competitive to the state-of-the-art independent AR and NAR models.


A survey on multi-objective hyperparameter optimization algorithms for Machine Learning

arXiv.org Artificial Intelligence

Hyperparameter optimization (HPO) is a necessary step to ensure the best possible performance of Machine Learning (ML) algorithms. Several methods have been developed to perform HPO; most of these are focused on optimizing one performance measure (usually an error-based measure), and the literature on such single-objective HPO problems is vast. Recently, though, algorithms have appeared which focus on optimizing multiple conflicting objectives simultaneously. This article presents a systematic survey of the literature published between 2014 and 2020 on multi-objective HPO algorithms, distinguishing between metaheuristic-based algorithms, metamodel-based algorithms, and approaches using a mixture of both. We also discuss the quality metrics used to compare multi-objective HPO procedures and present future research directions.


The Transformer Model

#artificialintelligence

We have already familiarized ourselves with the concept of self-attention as implemented by the Transformer attention mechanism for neural machine translation. We will now be shifting our focus on the details of the Transformer architecture itself, to discover how self-attention can be implemented without relying on the use of recurrence and convolutions. In this tutorial, you will discover the network architecture of the Transformer model. The Transformer Model Photo by Samule Sun, some rights reserved. The Transformer architecture follows an encoder-decoder structure, but does not rely on recurrence and convolutions in order to generate an output.