Collaborating Authors

Information Retrieval: Overviews

LaMDA: Language Models for Dialog Applications Artificial Intelligence

We present LaMDA: Language Models for Dialog Applications. LaMDA is a family of Transformer-based neural language models specialized for dialog, which have up to 137B parameters and are pre-trained on 1.56T words of public dialog data and web text. While model scaling alone can improve quality, it shows less improvements on safety and factual grounding. We demonstrate that fine-tuning with annotated data and enabling the model to consult external knowledge sources can lead to significant improvements towards the two key challenges of safety and factual grounding. The first challenge, safety, involves ensuring that the model's responses are consistent with a set of human values, such as preventing harmful suggestions and unfair bias. We quantify safety using a metric based on an illustrative set of human values, and we find that filtering candidate responses using a LaMDA classifier fine-tuned with a small amount of crowdworker-annotated data offers a promising approach to improving model safety. The second challenge, factual grounding, involves enabling the model to consult external knowledge sources, such as an information retrieval system, a language translator, and a calculator. We quantify factuality using a groundedness metric, and we find that our approach enables the model to generate responses grounded in known sources, rather than responses that merely sound plausible. Finally, we explore the use of LaMDA in the domains of education and content recommendations, and analyze their helpfulness and role consistency.

What is Event Knowledge Graph: A Survey Artificial Intelligence

Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many machine learning and artificial intelligence applications, such as intelligent search, question-answering, recommendation, and text generation. This paper provides a comprehensive survey of EKG from history, ontology, instance, and application views. Specifically, to characterize EKG thoroughly, we focus on its history, definitions, schema induction, acquisition, related representative graphs/systems, and applications. The development processes and trends are studied therein. We further summarize perspective directions to facilitate future research on EKG.

Baihe: SysML Framework for AI-driven Databases Artificial Intelligence

We present Baihe, a SysML Framework for AI-driven Databases. Using Baihe, an existing relational database system may be retrofitted to use learned components for query optimization or other common tasks, such as e.g. learned structure for indexing. To ensure the practicality and real world applicability of Baihe, its high level architecture is based on the following requirements: separation from the core system, minimal third party dependencies, Robustness, stability and fault tolerance, as well as stability and configurability. Based on the high level architecture, we then describe a concrete implementation of Baihe for PostgreSQL and present example use cases for learned query optimizers. To serve both practitioners, as well as researchers in the DB and AI4DB community Baihe for PostgreSQL will be released under open source license.

Quantum Mathematics in Artificial Intelligence

Journal of Artificial Intelligence Research

In the decade since 2010, successes in artificial intelligence have been at the forefront of computer science and technology, and vector space models have solidified a position at the forefront of artificial intelligence. At the same time, quantum computers have become much more powerful, and announcements of major advances are frequently in the news. The mathematical techniques underlying both these areas have more in common than is sometimes realized. Vector spaces took a position at the axiomatic heart of quantum mechanics in the 1930s, and this adoption was a key motivation for the derivation of logic and probability from the linear geometry of vector spaces. Quantum interactions between particles are modelled using the tensor product, which is also used to express objects and operations in artificial neural networks. This paper describes some of these common mathematical areas, including examples of how they are used in artificial intelligence (AI), particularly in automated reasoning and natural language processing (NLP). Techniques discussed include vector spaces, scalar products, subspaces and implication, orthogonal projection and negation, dual vectors, density matrices, positive operators, and tensor products. Application areas include information retrieval, categorization and implication, modelling word-senses and disambiguation, inference in knowledge bases, and semantic composition. Some of these approaches can potentially be implemented on quantum hardware. Many of the practical steps in this implementation are in early stages, and some are already realized. Explaining some of the common mathematical tools can help researchers in both AI and quantum computing further exploit these overlaps, recognizing and exploring new directions along the way.

A Word Selection Method for Producing Interpretable Distributional Semantic Word Vectors

Journal of Artificial Intelligence Research

Distributional semantic models represent the meaning of words as vectors. We introduce a selection method to learn a vector space that each of its dimensions is a natural word. The selection method starts from the most frequent words and selects a subset, which has the best performance. The method produces a vector space that each of its dimensions is a word. This is the main advantage of the method compared to fusion methods such as NMF, and neural embedding models. We apply the method to the ukWaC corpus and train a vector space of N=1500 basis words. We report tests results on word similarity tasks for MEN, RG-65, SimLex-999, and WordSim353 gold datasets. Also, results show that reducing the number of basis vectors from 5000 to 1500 reduces accuracy by about 1.5-2%. So, we achieve good interpretability without a large penalty. Interpretability evaluation results indicate that the word vectors obtained by the proposed method using N=1500 are more interpretable than word embedding models, and the baseline method. We report the top 15 words of 1500 selected basis words in this paper.

Parallel Logic Programming: A Sequel Artificial Intelligence

Multi-core and highly-connected architectures have become ubiquitous, and this has brought renewed interest in language-based approaches to the exploitation of parallelism. Since its inception, logic programming has been recognized as a programming paradigm with great potential for automated exploitation of parallelism. The comprehensive survey of the first twenty years of research in parallel logic programming, published in 2001, has served since as a fundamental reference to researchers and developers. The contents are quite valid today, but at the same time the field has continued evolving at a fast pace in the years that have followed. Many of these achievements and ongoing research have been driven by the rapid pace of technological innovation, that has led to advances such as very large clusters, the wide diffusion of multi-core processors, the game-changing role of general-purpose graphic processing units, and the ubiquitous adoption of cloud computing. This has been paralleled by significant advances within logic programming, such as tabling, more powerful static analysis and verification, the rapid growth of Answer Set Programming, and in general, more mature implementations and systems. This survey provides a review of the research in parallel logic programming covering the period since 2001, thus providing a natural continuation of the previous survey. The goal of the survey is to serve not only as a reference for researchers and developers of logic programming systems, but also as engaging reading for anyone interested in logic and as a useful source for researchers in parallel systems outside logic programming. Under consideration in Theory and Practice of Logic Programming (TPLP).

Cross-language Information Retrieval Artificial Intelligence

Two key assumptions shape the usual view of ranked retrieval: (1) that the searcher can choose words for their query that might appear in the documents that they wish to see, and (2) that ranking retrieved documents will suffice because the searcher will be able to recognize those which they wished to find. When the documents to be searched are in a language not known by the searcher, neither assumption is true. In such cases, Cross-Language Information Retrieval (CLIR) is needed. This chapter reviews the state of the art for cross-language information retrieval and outlines some open research questions.

Recent Advances in Automated Question Answering In Biomedical Domain Artificial Intelligence

The objective of automated Question Answering (QA) systems is to provide answers to user queries in a time efficient manner. The answers are usually found in either databases (or knowledge bases) or a collection of documents commonly referred to as the corpus. In the past few decades there has been a proliferation of acquisition of knowledge and consequently there has been an exponential growth in new scientific articles in the field of biomedicine. Therefore, it has become difficult to keep track of all the information in the domain, even for domain experts. With the improvements in commercial search engines, users can type in their queries and get a small set of documents most relevant for answering their query, as well as relevant snippets from the documents in some cases. However, it may be still tedious and time consuming to manually look for the required information or answers. This has necessitated the development of efficient QA systems which aim to find exact and precise answers to user provided natural language questions in the domain of biomedicine. In this paper, we introduce the basic methodologies used for developing general domain QA systems, followed by a thorough investigation of different aspects of biomedical QA systems, including benchmark datasets and several proposed approaches, both using structured databases and collection of texts. We also explore the limitations of current systems and explore potential avenues for further advancement.

An overview of event extraction and its applications Artificial Intelligence

With the rapid development of information technology, online platforms have produced enormous text resources. As a particular form of Information Extraction (IE), Event Extraction (EE) has gained increasing popularity due to its ability to automatically extract events from human language. However, there are limited literature surveys on event extraction. Existing review works either spend much effort describing the details of various approaches or focus on a particular field. This study provides a comprehensive overview of the state-of-the-art event extraction methods and their applications from text, including closed-domain and open-domain event extraction. A trait of this survey is that it provides an overview in moderate complexity, avoiding involving too many details of particular approaches. This study focuses on discussing the common characters, application fields, advantages, and disadvantages of representative works, ignoring the specificities of individual approaches. Finally, we summarize the common issues, current solutions, and future research directions. We hope this work could help researchers and practitioners obtain a quick overview of recent event extraction.

Privacy in Open Search: A Review of Challenges and Solutions Artificial Intelligence

Privacy is of worldwide concern regarding activities and processes that include sensitive data. For this reason, many countries and territories have been recently approving regulations controlling the extent to which organizations may exploit data provided by people. Artificial intelligence areas, such as machine learning and natural language processing, have already successfully employed privacy-preserving mechanisms in order to safeguard data privacy in a vast number of applications. Information retrieval (IR) is likewise prone to privacy threats, such as attacks and unintended disclosures of documents and search history, which may cripple the security of users and be penalized by data protection laws. This work aims at highlighting and discussing open challenges for privacy in the recent literature of IR, focusing on tasks featuring user-generated text data. Our contribution is threefold: firstly, we present an overview of privacy threats to IR tasks; secondly, we discuss applicable privacy-preserving mechanisms which may be employed in solutions to restrain privacy hazards; finally, we bring insights on the tradeoffs between privacy preservation and utility performance for IR tasks.