Goto

Collaborating Authors

Results



Causal-aware Safe Policy Improvement for Task-oriented dialogue

arXiv.org Artificial Intelligence

The recent success of reinforcement learning's (RL) in solving complex tasks is most often attributed to its capacity to explore and exploit an environment where it has been trained. Sample efficiency is usually not an issue since cheap simulators are available to sample data on-policy. On the other hand, task oriented dialogues are usually learnt from offline data collected using human demonstrations. Collecting diverse demonstrations and annotating them is expensive. Unfortunately, use of RL methods trained on off-policy data are prone to issues of bias and generalization, which are further exacerbated by stochasticity in human response and non-markovian belief state of a dialogue management system. To this end, we propose a batch RL framework for task oriented dialogue policy learning: causal aware safe policy improvement (CASPI). This method gives guarantees on dialogue policy's performance and also learns to shape rewards according to intentions behind human responses, rather than just mimicking demonstration data; this couple with batch-RL helps overall with sample efficiency of the framework. We demonstrate the effectiveness of this framework on a dialogue-context-to-text Generation and end-to-end dialogue task of the Multiwoz2.0 dataset. The proposed method outperforms the current state of the art on these metrics, in both case. In the end-to-end case, our method trained only on 10\% of the data was able to out perform current state in three out of four evaluation metrics.


An AutoML-based Approach to Multimodal Image Sentiment Analysis

arXiv.org Artificial Intelligence

Sentiment analysis is a research topic focused on analysing data to extract information related to the sentiment that it causes. Applications of sentiment analysis are wide, ranging from recommendation systems, and marketing to customer satisfaction. Recent approaches evaluate textual content using Machine Learning techniques that are trained over large corpora. However, as social media grown, other data types emerged in large quantities, such as images. Sentiment analysis in images has shown to be a valuable complement to textual data since it enables the inference of the underlying message polarity by creating context and connections. Multimodal sentiment analysis approaches intend to leverage information of both textual and image content to perform an evaluation. Despite recent advances, current solutions still flounder in combining both image and textual information to classify social media data, mainly due to subjectivity, inter-class homogeneity and fusion data differences. In this paper, we propose a method that combines both textual and image individual sentiment analysis into a final fused classification based on AutoML, that performs a random search to find the best model. Our method achieved state-of-the-art performance in the B-T4SA dataset, with 95.19% accuracy.


Taxonomic survey of Hindi Language NLP systems

arXiv.org Artificial Intelligence

The field of Natural language processing can be formally defined as - "A theoretically motivated range of computational techniques for analyzing and representing naturally occurring texts at one or more levels of linguistic analysis for the purpose of achieving human-like language processing for a range of tasks or applications"[69]. The naturally occurring text can be in written or spoken form.A wide array of domains contribute to NLP development like linguistics, computer science and psychology.The linguistics field helps to understand the formal structure of language while computer science domain helps to find efficient internal representations and data structures.The study of "Psychology" can be useful to understand the methodology used by humans for dealing with languages. NLP can be considered to be having two distinct focus namely (1)Natural Language Generation(NLG) and (2)Natural Language Understanding(NLU). The NLG deals with planning to use the representation of language to decide what should be generated at each point in interaction, while NLU needs to analyze language and decide which is best way to represent it meaningfully.We, in this survey paper, concentrate on area of NLU for written text.Hence the NLP henceforth might be considered as NLU and vice versa. Motivation for designing Indian NLP systems Hindi and English are the official languages in central government of India(GOI). Indian community faces a "Digital Divide" due to dominance of English as mode of communication in higher education, judiciary, corporate sector and Public administration at Central level whereas the government in states work in their respective regional languages [67].The expansion of Internet has inter-connected the socioeconomic environment of the world and redefined the concept of global culture.As per a report in 2017 by the companies kpmg and Google


Analyzing Zero-shot Cross-lingual Transfer in Supervised NLP Tasks

arXiv.org Artificial Intelligence

In zero-shot cross-lingual transfer, a supervised NLP task trained on a corpus in one language is directly applicable to another language without any additional training. A source of cross-lingual transfer can be as straightforward as lexical overlap between languages (e.g., use of the same scripts, shared subwords) that naturally forces text embeddings to occupy a similar representation space. Recently introduced cross-lingual language model (XLM) pretraining brings out neural parameter sharing in Transformer-style networks as the most important factor for the transfer. In this paper, we aim to validate the hypothetically strong cross-lingual transfer properties induced by XLM pretraining. Particularly, we take XLM-RoBERTa (XLMR) in our experiments that extend semantic textual similarity (STS), SQuAD and KorQuAD for machine reading comprehension, sentiment analysis, and alignment of sentence embeddings under various cross-lingual settings. Our results indicate that the presence of cross-lingual transfer is most pronounced in STS, sentiment analysis the next, and MRC the last. That is, the complexity of a downstream task softens the degree of crosslingual transfer. All of our results are empirically observed and measured, and we make our code and data publicly available.


A Joint Training Dual-MRC Framework for Aspect Based Sentiment Analysis

arXiv.org Artificial Intelligence

Aspect based sentiment analysis (ABSA) involves three fundamental subtasks: aspect term extraction, opinion term extraction, and aspect-level sentiment classification. Early works only focused on solving one of these subtasks individually. Some recent work focused on solving a combination of two subtasks, e.g., extracting aspect terms along with sentiment polarities or extracting the aspect and opinion terms pair-wisely. More recently, the triple extraction task has been proposed, i.e., extracting the (aspect term, opinion term, sentiment polarity) triples from a sentence. However, previous approaches fail to solve all subtasks in a unified end-to-end framework. In this paper, we propose a complete solution for ABSA. We construct two machine reading comprehension (MRC) problems, and solve all subtasks by joint training two BERT-MRC models with parameters sharing. We conduct experiments on these subtasks and results on several benchmark datasets demonstrate the effectiveness of our proposed framework, which significantly outperforms existing state-of-the-art methods.


Continual Learning in Task-Oriented Dialogue Systems

arXiv.org Artificial Intelligence

Continual learning in task-oriented dialogue systems can allow us to add new domains and functionalities through time without incurring the high cost of a whole system retraining. In this paper, we propose a continual learning benchmark for task-oriented dialogue systems with 37 domains to be learned continuously in four settings, such as intent recognition, state tracking, natural language generation, and end-to-end. Moreover, we implement and compare multiple existing continual learning baselines, and we propose a simple yet effective architectural method based on residual adapters. Our experiments demonstrate that the proposed architectural method and a simple replay-based strategy perform comparably well but they both achieve inferior performance to the multi-task learning baseline, in where all the data are shown at once, showing that continual learning in task-oriented dialogue systems is a challenging task. Furthermore, we reveal several trade-offs between different continual learning methods in term of parameter usage and memory size, which are important in the design of a task-oriented dialogue system. The proposed benchmark is released together with several baselines to promote more research in this direction.


Robustness Testing of Language Understanding in Dialog Systems

arXiv.org Artificial Intelligence

Most language understanding models in dialog systems are trained on a small amount of annotated training data, and evaluated in a small set from the same distribution. However, these models can lead to system failure or undesirable outputs when being exposed to natural perturbation in practice. In this paper, we conduct comprehensive evaluation and analysis with respect to the robustness of natural language understanding models, and introduce three important aspects related to language understanding in real-world dialog systems, namely, language variety, speech characteristics, and noise perturbation. We propose a model-agnostic toolkit LAUG to approximate natural perturbation for testing the robustness issues in dialog systems. Four data augmentation approaches covering the three aspects are assembled in LAUG, which reveals critical robustness issues in state-of-the-art models. The augmented dataset through LAUG can be used to facilitate future research on the robustness testing of language understanding in dialog systems.


Automatic Curriculum Learning With Over-repetition Penalty for Dialogue Policy Learning

arXiv.org Artificial Intelligence

Dialogue policy learning based on reinforcement learning is difficult to be applied to real users to train dialogue agents from scratch because of the high cost. User simulators, which choose random user goals for the dialogue agent to train on, have been considered as an affordable substitute for real users. However, this random sampling method ignores the law of human learning, making the learned dialogue policy inefficient and unstable. We propose a novel framework, Automatic Curriculum Learning-based Deep Q-Network (ACL-DQN), which replaces the traditional random sampling method with a teacher policy model to realize the dialogue policy for automatic curriculum learning. The teacher model arranges a meaningful ordered curriculum and automatically adjusts it by monitoring the learning progress of the dialogue agent and the over-repetition penalty without any requirement of prior knowledge. The learning progress of the dialogue agent reflects the relationship between the dialogue agent's ability and the sampled goals' difficulty for sample efficiency. The over-repetition penalty guarantees the sampled diversity. Experiments show that the ACL-DQN significantly improves the effectiveness and stability of dialogue tasks with a statistically significant margin. Furthermore, the framework can be further improved by equipping with different curriculum schedules, which demonstrates that the framework has strong generalizability.


JosephAssaker/Twitter-Sentiment-Analysis-Classical-Approach-VS-Deep-Learning

#artificialintelligence

This project's aim, is to explore the world of Natural Language Processing (NLP) by building what is known as a Sentiment Analysis Model. A sentiment analysis model is a model that analyses a given piece of text and predicts whether this piece of text expresses positive or negative sentiment. To this end, we will be using the sentiment140 dataset containing data collected from twitter. An impressive feature of this dataset is that it is perfectly balanced (i.e., the number of examples in each class is equal). Our approach was unique because our training data was automatically created, as opposed to having humans manual annotate tweets.