Collaborating Authors


Dual Slot Selector via Local Reliability Verification for Dialogue State Tracking Artificial Intelligence

The goal of dialogue state tracking (DST) is to predict the current dialogue state given all previous dialogue contexts. Existing approaches generally predict the dialogue state at every turn from scratch. However, the overwhelming majority of the slots in each turn should simply inherit the slot values from the previous turn. Therefore, the mechanism of treating slots equally in each turn not only is inefficient but also may lead to additional errors because of the redundant slot value generation. To address this problem, we devise the two-stage DSS-DST which consists of the Dual Slot Selector based on the current turn dialogue, and the Slot Value Generator based on the dialogue history. The Dual Slot Selector determines each slot whether to update slot value or to inherit the slot value from the previous turn from two aspects: (1) if there is a strong relationship between it and the current turn dialogue utterances; (2) if a slot value with high reliability can be obtained for it through the current turn dialogue. The slots selected to be updated are permitted to enter the Slot Value Generator to update values by a hybrid method, while the other slots directly inherit the values from the previous turn. Empirical results show that our method achieves 56.93%, 60.73%, and 58.04% joint accuracy on MultiWOZ 2.0, MultiWOZ 2.1, and MultiWOZ 2.2 datasets respectively and achieves a new state-of-the-art performance with significant improvements.

A Comprehensive Assessment of Dialog Evaluation Metrics Artificial Intelligence

Automatic evaluation metrics are a crucial component of dialog systems research. Standard language evaluation metrics are known to be ineffective for evaluating dialog. As such, recent research has proposed a number of novel, dialog-specific metrics that correlate better with human judgements. Due to the fast pace of research, many of these metrics have been assessed on different datasets and there has as yet been no time for a systematic comparison between them. To this end, this paper provides a comprehensive assessment of recently proposed dialog evaluation metrics on a number of datasets. In this paper, 17 different automatic evaluation metrics are evaluated on 10 different datasets. Furthermore, the metrics are assessed in different settings, to better qualify their respective strengths and weaknesses. Metrics are assessed (1) on both the turn level and the dialog level, (2) for different dialog lengths, (3) for different dialog qualities (e.g., coherence, engaging), (4) for different types of response generation models (i.e., generative, retrieval, simple models and state-of-the-art models), (5) taking into account the similarity of different metrics and (6) exploring combinations of different metrics. This comprehensive assessment offers several takeaways pertaining to dialog evaluation metrics in general. It also suggests how to best assess evaluation metrics and indicates promising directions for future work.

T-BERT -- Model for Sentiment Analysis of Micro-blogs Integrating Topic Model and BERT Artificial Intelligence

Sentiment analysis (SA) has become an extensive research area in recent years impacting diverse fields including ecommerce, consumer business, and politics, driven by increasing adoption and usage of social media platforms. It is challenging to extract topics and sentiments from unsupervised short texts emerging in such contexts, as they may contain figurative words, strident data, and co-existence of many possible meanings for a single word or phrase, all contributing to obtaining incorrect topics. Most prior research is based on a specific theme/rhetoric/focused-content on a clean dataset. In the work reported here, the effectiveness of BERT(Bidirectional Encoder Representations from Transformers) in sentiment classification tasks from a raw live dataset taken from a popular microblogging platform is demonstrated. A novel T-BERT framework is proposed to show the enhanced performance obtainable by combining latent topics with contextual BERT embeddings. Numerical experiments were conducted on an ensemble with about 42000 datasets using platform with a hardware configuration consisting of Nvidia Tesla K80(CUDA), 4 core CPU, 15GB RAM running on an isolated Google Cloud Platform instance. The empirical results show that the model improves in performance while adding topics to BERT and an accuracy rate of 90.81% on sentiment classification using BERT with the proposed approach.

Sentiment analysis in tweets: an assessment study from classical to modern text representation models Artificial Intelligence

With the growth of social medias, such as Twitter, plenty of user-generated data emerge daily. The short texts published on Twitter -- the tweets -- have earned significant attention as a rich source of information to guide many decision-making processes. However, their inherent characteristics, such as the informal, and noisy linguistic style, remain challenging to many natural language processing (NLP) tasks, including sentiment analysis. Sentiment classification is tackled mainly by machine learning-based classifiers. The literature has adopted word representations from distinct natures to transform tweets to vector-based inputs to feed sentiment classifiers. The representations come from simple count-based methods, such as bag-of-words, to more sophisticated ones, such as BERTweet, built upon the trendy BERT architecture. Nevertheless, most studies mainly focus on evaluating those models using only a small number of datasets. Despite the progress made in recent years in language modelling, there is still a gap regarding a robust evaluation of induced embeddings applied to sentiment analysis on tweets. Furthermore, while fine-tuning the model from downstream tasks is prominent nowadays, less attention has been given to adjustments based on the specific linguistic style of the data. In this context, this study fulfils an assessment of existing language models in distinguishing the sentiment expressed in tweets by using a rich collection of 22 datasets from distinct domains and five classification algorithms. The evaluation includes static and contextualized representations. Contexts are assembled from Transformer-based autoencoder models that are also fine-tuned based on the masked language model task, using a plethora of strategies.

Grey-box Adversarial Attack And Defence For Sentiment Classification Artificial Intelligence

We introduce a grey-box adversarial attack and defence framework for sentiment classification. We address the issues of differentiability, label preservation and input reconstruction for adversarial attack and defence in one unified framework. Our results show that once trained, the attacking model is capable of generating high-quality adversarial examples substantially faster (one order of magnitude less in time) than state-of-the-art attacking methods. These examples also preserve the original sentiment according to human evaluation. Additionally, our framework produces an improved classifier that is robust in defending against multiple adversarial attacking methods. Code is available at:

Slot Self-Attentive Dialogue State Tracking Artificial Intelligence

An indispensable component in task-oriented dialogue systems is the dialogue state tracker, which keeps track of users' intentions in the course of conversation. The typical approach towards this goal is to fill in multiple pre-defined slots that are essential to complete the task. Although various dialogue state tracking methods have been proposed in recent years, most of them predict the value of each slot separately and fail to consider the correlations among slots. In this paper, we propose a slot self-attention mechanism that can learn the slot correlations automatically. Specifically, a slot-token attention is first utilized to obtain slot-specific features from the dialogue context. Then a stacked slot self-attention is applied on these features to learn the correlations among slots. We conduct comprehensive experiments on two multi-domain task-oriented dialogue datasets, including MultiWOZ 2.0 and MultiWOZ 2.1. The experimental results demonstrate that our approach achieves state-of-the-art performance on both datasets, verifying the necessity and effectiveness of taking slot correlations into consideration.

Over a Decade of Social Opinion Mining Artificial Intelligence

Social media popularity and importance is on the increase, due to people using it for various types of social interaction across multiple channels. This social interaction by online users includes submission of feedback, opinions and recommendations about various individuals, entities, topics, and events. This systematic review focuses on the evolving research area of Social Opinion Mining, tasked with the identification of multiple opinion dimensions, such as subjectivity, sentiment polarity, emotion, affect, sarcasm and irony, from user-generated content represented across multiple social media platforms and in various media formats, like text, image, video and audio. Therefore, through Social Opinion Mining, natural language can be understood in terms of the different opinion dimensions, as expressed by humans. This contributes towards the evolution of Artificial Intelligence, which in turn helps the advancement of several real-world use cases, such as customer service and decision making. A thorough systematic review was carried out on Social Opinion Mining research which totals 485 studies and spans a period of twelve years between 2007 and 2018. The in-depth analysis focuses on the social media platforms, techniques, social datasets, language, modality, tools and technologies, natural language processing tasks and other aspects derived from the published studies. Such multi-source information fusion plays a fundamental role in mining of people's social opinions from social media platforms. These can be utilised in many application areas, ranging from marketing, advertising and sales for product/service management, and in multiple domains and industries, such as politics, technology, finance, healthcare, sports and government. Future research directions are presented, whereas further research and development has the potential of leaving a wider academic and societal impact.

Audrey: A Personalized Open-Domain Conversational Bot Artificial Intelligence

Conversational Intelligence requires that a person engage on informational, personal and relational levels. Advances in Natural Language Understanding have helped recent chatbots succeed at dialog on the informational level. However, current techniques still lag for conversing with humans on a personal level and fully relating to them. The University of Michigan's submission to the Alexa Prize Grand Challenge 3, Audrey, is an open-domain conversational chat-bot that aims to engage customers on these levels through interest driven conversations guided by customers' personalities and emotions. Audrey is built from socially-aware models such as Emotion Detection and a Personal Understanding Module to grasp a deeper understanding of users' interests and desires. Our architecture interacts with customers using a hybrid approach balanced between knowledge-driven response generators and context-driven neural response generators to cater to all three levels of conversations. During the semi-finals period, we achieved an average cumulative rating of 3.25 on a 1-5 Likert scale.

Multi-Domain Dialogue State Tracking based on State Graph Artificial Intelligence

We investigate the problem of multi-domain Dialogue State Tracking (DST) with open vocabulary, which aims to extract the state from the dialogue. Existing approaches usually concatenate previous dialogue state with dialogue history as the input to a bi-directional Transformer encoder. They rely on the self-attention mechanism of Transformer to connect tokens in them. However, attention may be paid to spurious connections, leading to wrong inference. In this paper, we propose to construct a dialogue state graph in which domains, slots and values from the previous dialogue state are connected properly. Through training, the graph node and edge embeddings can encode co-occurrence relations between domain-domain, slot-slot and domain-slot, reflecting the strong transition paths in general dialogue. The state graph, encoded with relational-GCN, is fused into the Transformer encoder. Experimental results show that our approach achieves a new state of the art on the task while remaining efficient. It outperforms existing open-vocabulary DST approaches.

Context-Guided BERT for Targeted Aspect-Based Sentiment Analysis Artificial Intelligence

Aspect-based sentiment analysis (ABSA) and Targeted ASBA (TABSA) allow finer-grained inferences about sentiment to be drawn from the same text, depending on context. For example, a given text can have different targets (e.g., neighborhoods) and different aspects (e.g., price or safety), with different sentiment associated with each target-aspect pair. In this paper, we investigate whether adding context to self-attention models improves performance on (T)ABSA. We propose two variants of Context-Guided BERT (CG-BERT) that learn to distribute attention under different contexts. We first adapt a context-aware Transformer to produce a CG-BERT that uses context-guided softmax-attention. Next, we propose an improved Quasi-Attention CG-BERT model that learns a compositional attention that supports subtractive attention. We train both models with pretrained BERT on two (T)ABSA datasets: SentiHood and SemEval-2014 (Task 4). Both models achieve new state-of-the-art results with our QACG-BERT model having the best performance. Furthermore, we provide analyses of the impact of context in the our proposed models. Our work provides more evidence for the utility of adding context-dependencies to pretrained self-attention-based language models for context-based natural language tasks.