Collaborating Authors


A Review of Dialogue Systems: From Trained Monkeys to Stochastic Parrots Artificial Intelligence

In spoken dialogue systems, we aim to deploy artificial intelligence to build automated dialogue agents that can converse with humans. Dialogue systems are increasingly being designed to move beyond just imitating conversation and also improve from such interactions over time. In this survey, we present a broad overview of methods developed to build dialogue systems over the years. Different use cases for dialogue systems ranging from task-based systems to open domain chatbots motivate and necessitate specific systems. Starting from simple rule-based systems, research has progressed towards increasingly complex architectures trained on a massive corpus of datasets, like deep learning systems. Motivated with the intuition of resembling human dialogues, progress has been made towards incorporating emotions into the natural language generator, using reinforcement learning. While we see a trend of highly marginal improvement on some metrics, we find that limited justification exists for the metrics, and evaluation practices are not uniform. To conclude, we flag these concerns and highlight possible research directions.

A Comprehensive Overview of Recommender System and Sentiment Analysis Artificial Intelligence

Recommender system has been proven to be significantly crucial in many fields and is widely used by various domains. Most of the conventional recommender systems rely on the numeric rating given by a user to reflect his opinion about a consumed item; however, these ratings are not available in many domains. As a result, a new source of information represented by the user-generated reviews is incorporated in the recommendation process to compensate for the lack of these ratings. The reviews contain prosperous and numerous information related to the whole item or a specific feature that can be extracted using the sentiment analysis field. This paper gives a comprehensive overview to help researchers who aim to work with recommender system and sentiment analysis. It includes a background of the recommender system concept, including phases, approaches, and performance metrics used in recommender systems. Then, it discusses the sentiment analysis concept and highlights the main points in the sentiment analysis, including level, approaches, and focuses on aspect-based sentiment analysis.

Migratable AI: Personalizing Dialog Conversations with migration context Artificial Intelligence

The migration of conversational AI agents across different embodiments in order to maintain the continuity of the task has been recently explored to further improve user experience. However, these migratable agents lack contextual understanding of the user information and the migrated device during the dialog conversations with the user. This opens the question of how an agent might behave when migrated into an embodiment for contextually predicting the next utterance. We collected a dataset from the dialog conversations between crowdsourced workers with the migration context involving personal and non-personal utterances in different settings (public or private) of embodiment into which the agent migrated. We trained the generative and information retrieval models on the dataset using with and without migration context and report the results of both qualitative metrics and human evaluation. We believe that the migration dataset would be useful for training future migratable AI systems.

GraphDialog: Integrating Graph Knowledge into End-to-End Task-Oriented Dialogue Systems Artificial Intelligence

End-to-end task-oriented dialogue systems aim to generate system responses directly from plain text inputs. There are two challenges for such systems: one is how to effectively incorporate external knowledge bases (KBs) into the learning framework; the other is how to accurately capture the semantics of dialogue history. In this paper, we address these two challenges by exploiting the graph structural information in the knowledge base and in the dependency parsing tree of the dialogue. To effectively leverage the structural information in dialogue history, we propose a new recurrent cell architecture which allows representation learning on graphs. To exploit the relations between entities in KBs, the model combines multi-hop reasoning ability based on the graph structure. Experimental results show that the proposed model achieves consistent improvement over state-of-the-art models on two different task-oriented dialogue datasets.

Building A User-Centric and Content-Driven Socialbot Artificial Intelligence

To build Sounding Board, we develop a system architecture that is capable of accommodating dialog strategies that we designed for socialbot conversations. The architecture consists of a multi-dimensional language understanding module for analyzing user utterances, a hierarchical dialog management framework for dialog context tracking and complex dialog control, and a language generation process that realizes the response plan and makes adjustments for speech synthesis. Additionally, we construct a new knowledge base to power the socialbot by collecting social chat content from a variety of sources. An important contribution of the system is the synergy between the knowledge base and the dialog management, i.e., the use of a graph structure to organize the knowledge base that makes dialog control very efficient in bringing related content to the discussion. Using the data collected from Sounding Board during the competition, we carry out in-depth analyses of socialbot conversations and user ratings which provide valuable insights in evaluation methods for socialbots. We additionally investigate a new approach for system evaluation and diagnosis that allows scoring individual dialog segments in the conversation. Finally, observing that socialbots suffer from the issue of shallow conversations about topics associated with unstructured data, we study the problem of enabling extended socialbot conversations grounded on a document. To bring together machine reading and dialog control techniques, a graph-based document representation is proposed, together with methods for automatically constructing the graph. Using the graph-based representation, dialog control can be carried out by retrieving nodes or moving along edges in the graph. To illustrate the usage, a mixed-initiative dialog strategy is designed for socialbot conversations on news articles.

HyST: A Hybrid Approach for Flexible and Accurate Dialogue State Tracking Artificial Intelligence

Recent works on end-to-end trainable neural network based approaches have demonstrated state-of-the-art results on dialogue state tracking. The best performing approaches estimate a probability distribution over all possible slot values. However, these approaches do not scale for large value sets commonly present in real-life applications and are not ideal for tracking slot values that were not observed in the training set. To tackle these issues, candidate-generation-based approaches have been proposed. These approaches estimate a set of values that are possible at each turn based on the conversation history and/or language understanding outputs, and hence enable state tracking over unseen values and large value sets however, they fall short in terms of performance in comparison to the first group. In this work, we analyze the performance of these two alternative dialogue state tracking methods, and present a hybrid approach (HyST) which learns the appropriate method for each slot type. To demonstrate the effectiveness of HyST on a rich-set of slot types, we experiment with the recently released MultiWOZ-2.0 multi-domain, task-oriented dialogue-dataset. Our experiments show that HyST scales to multi-domain applications. Our best performing model results in a relative improvement of 24% and 10% over the previous SOTA and our best baseline respectively.

Transferable Multi-Domain State Generator for Task-Oriented Dialogue Systems Artificial Intelligence

Over-dependence on domain ontology and lack of knowledge sharing across domains are two practical and yet less studied problems of dialogue state tracking. Existing approaches generally fall short in tracking unknown slot values during inference and often have difficulties in adapting to new domains. In this paper, we propose a Transferable Dialogue State Generator (TRADE) that generates dialogue states from utterances using a copy mechanism, facilitating knowledge transfer when predicting (domain, slot, value) triplets not encountered during training. Our model is composed of an utterance encoder, a slot gate, and a state generator, which are shared across domains. Empirical results demonstrate that TRADE achieves state-of-the-art joint goal accuracy of 48.62% for the five domains of MultiWOZ, a human-human dialogue dataset. In addition, we show its transferring ability by simulating zero-shot and few-shot dialogue state tracking for unseen domains. TRADE achieves 60.58% joint goal accuracy in one of the zero-shot domains, and is able to adapt to few-shot cases without forgetting already trained domains.

Learning to Memorize in Neural Task-Oriented Dialogue Systems Artificial Intelligence

In this thesis, we leverage the neural copy mechanism and memory-augmented neural networks (MANNs) to address existing challenge of neural task-oriented dialogue learning. We show the effectiveness of our strategy by achieving good performance in multi-domain dialogue state tracking, retrieval-based dialogue systems, and generation-based dialogue systems. We first propose a transferable dialogue state generator (TRADE) that leverages its copy mechanism to get rid of dialogue ontology and share knowledge between domains. We also evaluate unseen domain dialogue state tracking and show that TRADE enables zero-shot dialogue state tracking and can adapt to new few-shot domains without forgetting the previous domains. Second, we utilize MANNs to improve retrieval-based dialogue learning. They are able to capture dialogue sequential dependencies and memorize long-term information. We also propose a recorded delexicalization copy strategy to replace real entity values with ordered entity types. Our models are shown to surpass other retrieval baselines, especially when the conversation has a large number of turns. Lastly, we tackle generation-based dialogue learning with two proposed models, the memory-to-sequence (Mem2Seq) and global-to-local memory pointer network (GLMP). Mem2Seq is the first model to combine multi-hop memory attention with the idea of the copy mechanism. GLMP further introduces the concept of response sketching and double pointers copying. We show that GLMP achieves the state-of-the-art performance on human evaluation.

Survey on Evaluation Methods for Dialogue Systems Artificial Intelligence

In this paper we survey the methods and concepts developed for the evaluation of dialogue systems. Evaluation is a crucial part during the development process. Often, dialogue systems are evaluated by means of human evaluations and questionnaires. However, this tends to be very cost and time intensive. Thus, much work has been put into finding methods, which allow to reduce the involvement of human labour. In this survey, we present the main concepts and methods. For this, we differentiate between the various classes of dialogue systems (task-oriented dialogue systems, conversational dialogue systems, and question-answering dialogue systems). We cover each class by introducing the main technologies developed for the dialogue systems and then by presenting the evaluation methods regarding this class.

Recent advances in conversational NLP : Towards the standardization of Chatbot building Artificial Intelligence

Dialogue systems have become recently essential in our life. Their use is getting more and more fluid and easy throughout the time. This boils down to the improvements made in NLP and AI fields. In this paper, we try to provide an overview to the current state of the art of dialogue systems, their categories and the different approaches to build them. We end up with a discussion that compares all the techniques and analyzes the strengths and weaknesses of each. Finally, we present an opinion piece suggesting to orientate the research towards the standardization of dialogue systems building.