Collaborating Authors


Natural Language Processing in-and-for Design Research Artificial Intelligence

We review the scholarly contributions that utilise Natural Language Processing (NLP) methods to support the design process. Using a heuristic approach, we collected 223 articles published in 32 journals and within the period 1991-present. We present state-of-the-art NLP in-and-for design research by reviewing these articles according to the type of natural language text sources: internal reports, design concepts, discourse transcripts, technical publications, consumer opinions, and others. Upon summarizing and identifying the gaps in these contributions, we utilise an existing design innovation framework to identify the applications that are currently being supported by NLP. We then propose a few methodological and theoretical directions for future NLP in-and-for design research.

Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network Artificial Intelligence

Aspect-level sentiment classification (ASC) aims to predict the fine-grained sentiment polarity towards a given aspect mentioned in a review. Despite recent advances in ASC, enabling machines to preciously infer aspect sentiments is still challenging. This paper tackles two challenges in ASC: (1) due to lack of aspect knowledge, aspect representation derived in prior works is inadequate to represent aspect's exact meaning and property information; (2) prior works only capture either local syntactic information or global relational information, thus missing either one of them leads to insufficient syntactic information. To tackle these challenges, we propose a novel ASC model which not only end-to-end embeds and leverages aspect knowledge but also marries the two kinds of syntactic information and lets them compensate for each other. Our model includes three key components: (1) a knowledge-aware gated recurrent memory network recurrently integrates dynamically summarized aspect knowledge; (2) a dual syntax graph network combines both kinds of syntactic information to comprehensively capture sufficient syntactic information; (3) a knowledge integrating gate re-enhances the final representation with further needed aspect knowledge; (4) an aspect-to-context attention mechanism aggregates the aspect-related semantics from all hidden states into the final representation. Experimental results on several benchmark datasets demonstrate the effectiveness of our model, which overpass previous state-of-the-art models by large margins in terms of both Accuracy and Macro-F1.

Over a Decade of Social Opinion Mining Artificial Intelligence

Social media popularity and importance is on the increase, due to people using it for various types of social interaction across multiple channels. This social interaction by online users includes submission of feedback, opinions and recommendations about various individuals, entities, topics, and events. This systematic review focuses on the evolving research area of Social Opinion Mining, tasked with the identification of multiple opinion dimensions, such as subjectivity, sentiment polarity, emotion, affect, sarcasm and irony, from user-generated content represented across multiple social media platforms and in various media formats, like text, image, video and audio. Therefore, through Social Opinion Mining, natural language can be understood in terms of the different opinion dimensions, as expressed by humans. This contributes towards the evolution of Artificial Intelligence, which in turn helps the advancement of several real-world use cases, such as customer service and decision making. A thorough systematic review was carried out on Social Opinion Mining research which totals 485 studies and spans a period of twelve years between 2007 and 2018. The in-depth analysis focuses on the social media platforms, techniques, social datasets, language, modality, tools and technologies, natural language processing tasks and other aspects derived from the published studies. Such multi-source information fusion plays a fundamental role in mining of people's social opinions from social media platforms. These can be utilised in many application areas, ranging from marketing, advertising and sales for product/service management, and in multiple domains and industries, such as politics, technology, finance, healthcare, sports and government. Future research directions are presented, whereas further research and development has the potential of leaving a wider academic and societal impact.

The Adapter-Bot: All-In-One Controllable Conversational Model Artificial Intelligence

Considerable progress has been made towards conversational models that generate coherent and fluent responses by training large language models on large dialogue datasets. These models have little or no control of the generated responses and miss two important features: continuous dialogue skills integration and seamlessly leveraging diverse knowledge sources. In this paper, we propose the Adapter-Bot, a dialogue model that uses a fixed backbone conversational model such as DialGPT (Zhang et al., 2019) and triggers on-demand dialogue skills (e.g., emphatic response, weather information, movie recommendation) via different adapters (Houlsby et al., 2019). Each adapter can be trained independently, thus allowing a continual integration of skills without retraining the entire model. Depending on the skills, the model is able to process multiple knowledge types, such as text, tables, and graphs, in a seamless manner. The dialogue skills can be triggered automatically via a dialogue manager, or manually, thus allowing high-level control of the generated responses. At the current stage, we have implemented 12 response styles (e.g., positive, negative etc.), 8 goal-oriented skills (e.g. weather information, movie recommendation, etc.), and personalized and emphatic responses. We evaluate our model using automatic evaluation by comparing it with existing state-of-the-art conversational models, and we have released an interactive system at

Machine Reading Comprehension: The Role of Contextualized Language Models and Beyond Artificial Intelligence

Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language models (CLMs), the research of MRC has experienced two significant breakthroughs. MRC and CLM, as a phenomenon, have a great impact on the NLP community. In this survey, we provide a comprehensive and comparative review on MRC covering overall research topics about 1) the origin and development of MRC and CLM, with a particular focus on the role of CLMs; 2) the impact of MRC and CLM to the NLP community; 3) the definition, datasets, and evaluation of MRC; 4) general MRC architecture and technical methods in the view of two-stage Encoder-Decoder solving architecture from the insights of the cognitive process of humans; 5) previous highlights, emerging topics, and our empirical analysis, among which we especially focus on what works in different periods of MRC researches. We propose a full-view categorization and new taxonomies on these topics. The primary views we have arrived at are that 1) MRC boosts the progress from language processing to understanding; 2) the rapid improvement of MRC systems greatly benefits from the development of CLMs; 3) the theme of MRC is gradually moving from shallow text matching to cognitive reasoning.

Non-Autoregressive Dialog State Tracking Artificial Intelligence

Recent efforts in Dialogue State Tracking (DST) for task-oriented dialogues have progressed toward open-vocabulary or generation-based approaches where the models can generate slot value candidates from the dialogue history itself. These approaches have shown good performance gain, especially in complicated dialogue domains with dynamic slot values. However, they fall short in two aspects: (1) they do not allow models to explicitly learn signals across domains and slots to detect potential dependencies among (domain, slot) pairs; and (2) existing models follow auto-regressive approaches which incur high time cost when the dialogue evolves over multiple domains and multiple turns. In this paper, we propose a novel framework of Non-Autoregressive Dialog State Tracking (NADST) which can factor in potential dependencies among domains and slots to optimize the models towards better prediction of dialogue states as a complete set rather than separate slots. In particular, the non-autoregressive nature of our method not only enables decoding in parallel to significantly reduce the latency of DST for real-time dialogue response generation, but also detect dependencies among slots at token level in addition to slot and domain level. Our empirical results show that our model achieves the state-of-the-art joint accuracy across all domains on the MultiWOZ 2.1 corpus, and the latency of our model is an order of magnitude lower than the previous state of the art as the dialogue history extends over time.

Embedding Projection for Targeted Cross-lingual Sentiment: Model Comparisons and a Real-World Study

Journal of Artificial Intelligence Research

Sentiment analysis benefits from large, hand-annotated resources in order to train and test machine learning models, which are often data hungry. While some languages, e.g., English, have a vast arrayof these resources, most under-resourced languages do not, especially for fine-grained sentiment tasks, such as aspect-level or targeted sentiment analysis. To improve this situation, we propose a cross-lingual approach to sentiment analysis that is applicable to under-resourced languages and takes into account target-level information. This model incorporates sentiment information into bilingual distributional representations, byjointly optimizing them for semantics and sentiment, showing state-of-the-art performance at sentence-level when combined with machine translation. The adaptation to targeted sentiment analysis on multiple domains shows that our model outperforms other projection-based bilingual embedding methods on binary targetedsentiment tasks. Our analysis on ten languages demonstrates that the amount of unlabeled monolingual data has surprisingly little effect on the sentiment results. As expected, the choice of a annotated source language for projection to a target leads to better results for source-target language pairs which are similar. Therefore, our results suggest that more efforts should be spent on the creation of resources for less similar languages tothose which are resource-rich already. Finally, a domain mismatch leads to a decreased performance. This suggests resources in any language should ideally cover varieties of domains.

Pars-ABSA: An Aspect-based Sentiment Analysis Dataset in Persian Machine Learning

Due to the increased availability of online reviews, sentiment analysis had been witnessed a booming interest from the researchers. Sentiment analysis is a computational treatment of sentiment used to extract and understand the opinions of authors. While many systems were built to predict the sentiment of a document or a sentence, many others provide the necessary detail on various aspects of the entity (i.e. aspect-based sentiment analysis). Most of the available data resources were tailored to English and the other popular European languages. Although Persian is a language with more than 110 million speakers, to the best of our knowledge, there is not any public dataset on aspect-based sentiment analysis in Persian. This paper provides a manually annotated Persian dataset, Pars-ABSA, which is verified by 3 native Persian speakers. The dataset consists of 5114 positive, 3061 negative and 1827 neutral data samples from 5602 unique reviews. Moreover, as a baseline, this paper reports the performance of some state-of-the-art aspect-based sentiment analysis methods with a focus on deep learning, on Pars-ABSA. The obtained results are impressive compared to similar English state-of-the-art.