Goto

Collaborating Authors

Results



Artificial Intelligence Masterclass

#artificialintelligence

Online Courses Udemy Enter the new era of Hybrid AI Models optimized by Deep NeuroEvolution, with a complete toolkit of ML, DL & AI models Created by Hadelin de Ponteves, Kirill Eremenko, SuperDataScience Team English, Italian [Auto-generated] Students also bought Artificial Intelligence: Reinforcement Learning in Python Machine Learning and AI: Support Vector Machines in Python Advanced AI: Deep Reinforcement Learning in Python Ensemble Machine Learning in Python: Random Forest, AdaBoost Deep Learning: Advanced Computer Vision (GANs, SSD, More!) Preview this course GET COUPON CODE Description Today, we are bringing you the king of our AI courses...: The Artificial Intelligence MASTERCLASS Are you keen on Artificial Intelligence? Do want to learn to build the most powerful AI model developed so far and even play against it? Sounds tempting right... Then Artificial Intelligence Masterclass course is the right choice for you. This ultimate AI toolbox is all you need to nail it down with ease. You will get 10 hours step by step guide and the full roadmap which will help you build your own Hybrid AI Model from scratch.


Machine Learning Optimization Using Genetic Algorithm

@machinelearnbot

In this course, you will learn what hyperparameters are, what Genetic Algorithm is, and what hyperparameter optimization is. In this course, you will apply Genetic Algorithm to optimize the performance of Support Vector Machines and Multilayer Perceptron Neural Networks. Hyperparameter optimization will be done on two datasets, a regression dataset for the prediction of cooling and heating loads of buildings, and a classification dataset regarding the classification of emails into spam and non-spam. The SVM and MLP will be applied on the datasets without optimization and compare their results to after their optimization. By the end of this course, you will have learnt how to code Genetic Algorithm in Python and how to optimize your Machine Learning algorithms for maximal performance.


Machine Learning Optimization Using Genetic Algorithm

@machinelearnbot

In this course, you will learn what hyperparameters are, what Genetic Algorithm is, and what hyperparameter optimization is. In this course, you will apply Genetic Algorithm to optimize the performance of Support Vector Machines and Multilayer Perceptron Neural Networks. Hyperparameter optimization will be done on a regression dataset for the prediction of cooling and heating loads of buildings. The SVM and MLP will be applied on the dataset without optimization and compare their results to after their optimization. By the end of this course, you will have learnt how to code Genetic Algorithm in Python and how to optimize your Machine Learning algorithms for maximal performance.


Extending Machine Learning Algorithms Udemy

@machinelearnbot

Complex statistics in Machine Learning worry a lot of developers. Knowing statistics helps you build strong Machine Learning models that are optimized for a given problem statement. Understand the real-world examples that discuss the statistical side of Machine Learning and familiarize yourself with it. We will use libraries such as scikit-learn, e1071, randomForest, c50, xgboost, and so on.We will discuss the application of frequently used algorithms on various domain problems, using both Python and R programming.It focuses on the various tree-based machine learning models used by industry practitioners.We will also discuss k-nearest neighbors, Naive Bayes, Support Vector Machine and recommendation engine.By the end of the course, you will have mastered the required statistics for Machine Learning Algorithm and will be able to apply your new skills to any sort of industry problem. Pratap Dangeti develops machine learning and deep learning solutions for structured, image, and text data at TCS, in its research and innovation lab in Bangalore.


Artificial Intelligence II - Neural Networks in Java

@machinelearnbot

This course is about artificial neural networks. Artificial intelligence and machine learning are getting more and more popular nowadays. In the beginning, other techniques such as Support Vector Machines outperformed neural networks, but in the 21th century neural networks again gain popularity. In spite of the slow training procedure, neural networks can be very powerful. In the first part of the course you will learn about the theoretical background of neural networks, later you will learn how to implement them.