Not enough data to create a plot.
Try a different view from the menu above.
If anyone has questions about which course may work best for them, please feel free to contact or message me. I will teach you the real-world skills necessary to stand out from the crowd. Hardly it can be 8-10 hours.. Professionally, I am a Data Scientist having experience of 7 years in finance, E-commerce, retail and transport. From my courses you will straight away notice how I combine my own experience to deliver content in a easiest fashion. To sum up, I am absolutely passionate about Data Analytics and I am looking forward to sharing my own knowledge with you!
Celik, Bilge, Singh, Prabhant, Vanschoren, Joaquin
Automated Machine Learning (AutoML) has been used successfully in settings where the learning task is assumed to be static. In many real-world scenarios, however, the data distribution will evolve over time, and it is yet to be shown whether AutoML techniques can effectively design online pipelines in dynamic environments. This study aims to automate pipeline design for online learning while continuously adapting to data drift. For this purpose, we design an adaptive Online Automated Machine Learning (OAML) system, searching the complete pipeline configuration space of online learners, including preprocessing algorithms and ensembling techniques. This system combines the inherent adaptation capabilities of online learners with the fast automated pipeline (re)optimization capabilities of AutoML. Focusing on optimization techniques that can adapt to evolving objectives, we evaluate asynchronous genetic programming and asynchronous successive halving to optimize these pipelines continually. We experiment on real and artificial data streams with varying types of concept drift to test the performance and adaptation capabilities of the proposed system. The results confirm the utility of OAML over popular online learning algorithms and underscore the benefits of continuous pipeline redesign in the presence of data drift.
Roy, Sujit, Gorle, Gnaneswara Rao, Gaur, Vishal, Raza, Haider, Jameel, Shoaib
Predicting contextualised engagement in videos is a long-standing problem that has been popularly attempted by exploiting the number of views or the associated likes using different computational methods. The recent decade has seen a boom in online learning resources, and during the pandemic, there has been an exponential rise of online teaching videos without much quality control. The quality of the content could be improved if the creators could get constructive feedback on their content. Employing an army of domain expert volunteers to provide feedback on the videos might not scale. As a result, there has been a steep rise in developing computational methods to predict a user engagement score that is indicative of some form of possible user engagement, i.e., to what level a user would tend to engage with the content. A drawback in current methods is that they model various features separately, in a cascaded approach, that is prone to error propagation. Besides, most of them do not provide crucial explanations on how the creator could improve their content. In this paper, we have proposed a new unified model, CLUE for the educational domain, which learns from the features extracted from freely available public online teaching videos and provides explainable feedback on the video along with a user engagement score. Given the complexity of the task, our unified framework employs different pre-trained models working together as an ensemble of classifiers. Our model exploits various multi-modal features to model the complexity of language, context agnostic information, textual emotion of the delivered content, animation, speaker's pitch and speech emotions. Under a transfer learning setup, the overall model, in the unified space, is fine-tuned for downstream applications.
Pietikäinen, Matti, Silven, Olli
Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.
Zhu, Renyu, Zhang, Dongxiang, Han, Chengcheng, Gao, Ming, Lu, Xuesong, Qian, Weining, Zhou, Aoying
In this paper, we study knowledge tracing in the domain of programming education and make two important contributions. First, we harvest and publish so far the most comprehensive dataset, namely BePKT, which covers various online behaviors in an OJ system, including programming text problems, knowledge annotations, user-submitted code and system-logged events. Second, we propose a new model PDKT to exploit the enriched context for accurate student behavior prediction. More specifically, we construct a bipartite graph for programming problem embedding, and design an improved pre-training model PLCodeBERT for code embedding, as well as a double-sequence RNN model with exponential decay attention for effective feature fusion. Experimental results on the new dataset BePKT show that our proposed model establishes state-of-the-art performance in programming knowledge tracing. In addition, we verify that our code embedding strategy based on PLCodeBERT is complementary to existing knowledge tracing models to further enhance their accuracy. As a side product, PLCodeBERT also results in better performance in other programming-related tasks such as code clone detection.
Data science courses contain math--no avoiding that! This course is designed to teach learners the basic math you will need in order to be successful in almost any data science math course and was created for learners who have basic math skills but may not have taken algebra or pre-calculus. Data Science Math Skills introduces the core math that data science is built upon, with no extra complexity, introducing unfamiliar ideas and math symbols one-at-a-time. Science is undergoing a data explosion, and astronomy is leading the way. Modern telescopes produce terabytes of data per observation, and the simulations required to model our observable Universe push supercomputers to their limits.
This is an intermediate-level free artificial intelligence course. This course will teach the basics of modern AI as well as some of the representative applications of AI including machine learning, probabilistic reasoning, robotics, computer vision, and natural language processing. To understand this course, you should have some previous understanding of probability theory and linear algebra.
In the Internet of Things (IoT) era, billions of sensors and devices collect and process data from the environment, transmit them to cloud centers, and receive feedback via the internet for connectivity and perception. However, transmitting massive amounts of heterogeneous data, perceiving complex environments from these data, and then making smart decisions in a timely manner are difficult. Artificial intelligence (AI), especially deep learning, is now a proven success in various areas including computer vision, speech recognition, and natural language processing. AI introduced into the IoT heralds the era of artificial intelligence of things (AIoT). This paper presents a comprehensive survey on AIoT to show how AI can empower the IoT to make it faster, smarter, greener, and safer. Specifically, we briefly present the AIoT architecture in the context of cloud computing, fog computing, and edge computing. Then, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving. Next, we summarize some promising applications of AIoT that are likely to profoundly reshape our world. Finally, we highlight the challenges facing AIoT and some potential research opportunities.
Complex assignments typically consist of open-ended questions with large and diverse content in the context of both classroom and online graduate programs. With the sheer scale of these programs comes a variety of problems in peer and expert feedback, including rogue reviews. As such with the hope of identifying important contents needed for the review, in this work we present a very first work on key phrase classification with a detailed empirical study on traditional and most recent language modeling approaches. From this study, we find that the task of classification of key phrases is ambiguous at a human level producing Cohen's kappa of 0.77 on a new data set. Both pretrained language models and simple TFIDF SVM classifiers produce similar results with a former producing average of 0.6 F1 higher than the latter. We finally derive practical advice from our extensive empirical and model interpretability results for those interested in key phrase classification from educational reports in the future.
Online Courses Udemy - Complete Machine Learning with R Studio - ML for 2020, Linear & Logistic Regression, Decision Trees, XGBoost, SVM & other ML models in R programming language - R studio 4.1 (41 ratings), Created by Start-Tech Academy, English [Auto-generated] Preview this Udemy course -. GET COUPON CODE Description In this course we will learn and practice all the services of AWS Machine Learning which is being offered by AWS Cloud. There will be both theoretical and practical section of each AWS Machine Learning services.This course is for those who loves machine learning and would build application based on cognitive computing, AI and ML. You could integrate these services in your Web, Android, IoT, Desktop Applications like Face Detection, ChatBot, Voice Detection, Text to custom Speech (with pitch, emotions, etc), Speech to text, Sentimental Analysis on Social media or any textual data. Machine Learning Services like- Amazon Sagemaker to build, train, and deploy machine learning models at scale Amazon Comprehend for natural Language processing and text analytics Amazon Lex for conversational interfaces for your applications powered by the same deep learning technologies as Alexa Amazon Polly to turn text into lifelike speech using deep learning Object and scene detection,Image moderation,Facial analysis,Celebrity recognition,Face comparison,Text in image and many more Amazon Transcribe for automatic speech recognition Amazon Translate for natural and accurate language translation As Machine learning and cloud computing are trending topic and also have lot of job opportunities If you have interest in machine learning as well as cloud computing then this course for you.