Goto

Collaborating Authors

Results


Probabilistic Diagnostic Tests for Degradation Problems in Supervised Learning

arXiv.org Artificial Intelligence

Several studies point out different causes of performance degradation in supervised machine learning. Problems such as class imbalance, overlapping, small-disjuncts, noisy labels, and sparseness limit accuracy in classification algorithms. Even though a number of approaches either in the form of a methodology or an algorithm try to minimize performance degradation, they have been isolated efforts with limited scope. Most of these approaches focus on remediation of one among many problems, with experimental results coming from few datasets and classification algorithms, insufficient measures of prediction power, and lack of statistical validation for testing the real benefit of the proposed approach. This paper consists of two main parts: In the first part, a novel probabilistic diagnostic model based on identifying signs and symptoms of each problem is presented. Thereby, early and correct diagnosis of these problems is to be achieved in order to select not only the most convenient remediation treatment but also unbiased performance metrics. Secondly, the behavior and performance of several supervised algorithms are studied when training sets have such problems. Therefore, prediction of success for treatments can be estimated across classifiers.


Stacked Generalizations in Imbalanced Fraud Data Sets using Resampling Methods

arXiv.org Machine Learning

This study uses stacked generalization, which is a two-step process of combining machine learning methods, called meta or super learners, for improving the performance of algorithms in step one (by minimizing the error rate of each individual algorithm to reduce its bias in the learning set) and then in step two inputting the results into the meta learner with its stacked blended output (demonstrating improved performance with the weakest algorithms learning better). The method is essentially an enhanced cross-validation strategy. Although the process uses great computational resources, the resulting performance metrics on resampled fraud data show that increased system cost can be justified. A fundamental key to fraud data is that it is inherently not systematic and, as of yet, the optimal resampling methodology has not been identified. Building a test harness that accounts for all permutations of algorithm sample set pairs demonstrates that the complex, intrinsic data structures are all thoroughly tested. Using a comparative analysis on fraud data that applies stacked generalizations provides useful insight needed to find the optimal mathematical formula to be used for imbalanced fraud data sets.


A review of machine learning applications in wildfire science and management

arXiv.org Machine Learning

Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.


Missing Data Imputation for Classification Problems

arXiv.org Machine Learning

Imputation of missing data is a common application in various classification problems where the feature training matrix has missingness. A widely used solution to this imputation problem is based on the lazy learning technique, $k$-nearest neighbor (kNN) approach. However, most of the previous work on missing data does not take into account the presence of the class label in the classification problem. Also, existing kNN imputation methods use variants of Minkowski distance as a measure of distance, which does not work well with heterogeneous data. In this paper, we propose a novel iterative kNN imputation technique based on class weighted grey distance between the missing datum and all the training data. Grey distance works well in heterogeneous data with missing instances. The distance is weighted by Mutual Information (MI) which is a measure of feature relevance between the features and the class label. This ensures that the imputation of the training data is directed towards improving classification performance. This class weighted grey kNN imputation algorithm demonstrates improved performance when compared to other kNN imputation algorithms, as well as standard imputation algorithms such as MICE and missForest, in imputation and classification problems. These problems are based on simulated scenarios and UCI datasets with various rates of missingness.


A meta-algorithm for classification using random recursive tree ensembles: A high energy physics application

arXiv.org Machine Learning

The aim of this work is to propose a meta-algorithm for automatic classification in the presence of discrete binary classes. Classifier learning in the presence of overlapping class distributions is a challenging problem in machine learning. Overlapping classes are described by the presence of ambiguous areas in the feature space with a high density of points belonging to both classes. This often occurs in real-world datasets, one such example is numeric data denoting properties of particle decays derived from high-energy accelerators like the Large Hadron Collider (LHC). A significant body of research targeting the class overlap problem use ensemble classifiers to boost the performance of algorithms by using them iteratively in multiple stages or using multiple copies of the same model on different subsets of the input training data. The former is called boosting and the latter is called bagging. The algorithm proposed in this thesis targets a challenging classification problem in high energy physics - that of improving the statistical significance of the Higgs discovery. The underlying dataset used to train the algorithm is experimental data built from the official ATLAS full-detector simulation with Higgs events (signal) mixed with different background events (background) that closely mimic the statistical properties of the signal generating class overlap. The algorithm proposed is a variant of the classical boosted decision tree which is known to be one of the most successful analysis techniques in experimental physics. The algorithm utilizes a unified framework that combines two meta-learning techniques - bagging and boosting. The results show that this combination only works in the presence of a randomization trick in the base learners.


A Comparative Study on Crime in Denver City Based on Machine Learning and Data Mining

arXiv.org Machine Learning

To ensure the security of the general mass, crime prevention is one of the most higher priorities for any government. An accurate crime prediction model can help the government, law enforcement to prevent violence, detect the criminals in advance, allocate the government resources, and recognize problems causing crimes. To construct any future-oriented tools, examine and understand the crime patterns in the earliest possible time is essential. In this paper, I analyzed a real-world crime and accident dataset of Denver county, USA, from January 2014 to May 2019, which containing 478,578 incidents. This project aims to predict and highlights the trends of occurrence that will, in return, support the law enforcement agencies and government to discover the preventive measures from the prediction rates. At first, I apply several statistical analysis supported by several data visualization approaches. Then, I implement various classification algorithms such as Random Forest, Decision Tree, AdaBoost Classifier, Extra Tree Classifier, Linear Discriminant Analysis, K-Neighbors Classifiers, and 4 Ensemble Models to classify 15 different classes of crimes. The outcomes are captured using two popular test methods: train-test split, and k-fold cross-validation. Moreover, to evaluate the performance flawlessly, I also utilize precision, recall, F1-score, Mean Squared Error (MSE), ROC curve, and paired-T-test. Except for the AdaBoost classifier, most of the algorithms exhibit satisfactory accuracy. Random Forest, Decision Tree, Ensemble Model 1, 3, and 4 even produce me more than 90% accuracy. Among all the approaches, Ensemble Model 4 presented superior results for every evaluation basis. This study could be useful to raise the awareness of peoples regarding the occurrence locations and to assist security agencies to predict future outbreaks of violence in a specific area within a particular time.


The Application of Machine Learning Techniques for Predicting Results in Team Sport: A Review

arXiv.org Machine Learning

Over the past two decades, Machine Learning (ML) techniques have been increasingly utilized for the purpose of predicting outcomes in sport. In this paper, we provide a review of studies that have used ML for predicting results in team sport, covering studies from 1996 to 2019. We sought to answer five key research questions while extensively surveying papers in this field. This paper offers insights into which ML algorithms have tended to be used in this field, as well as those that are beginning to emerge with successful outcomes. Our research highlights defining characteristics of successful studies and identifies robust strategies for evaluating accuracy results in this application domain. Our study considers accuracies that have been achieved across different sports and explores the notion that outcomes of some team sports could be inherently more difficult to predict than others. Finally, our study uncovers common themes of future research directions across all surveyed papers, looking for gaps and opportunities, while proposing recommendations for future researchers in this domain.


An in-depth guide to supervised machine learning classification

#artificialintelligence

In supervised learning, algorithms learn from labeled data. After understanding the data, the algorithm determines which label should be given to new data by associating patterns to the unlabeled new data. Supervised learning can be divided into two categories: classification and regression. Some examples of classification include spam detection, churn prediction, sentiment analysis, dog breed detection and so on. Some examples of regression include house price prediction, stock price prediction, height-weight prediction and so on.


AppsPred: Predicting Context-Aware Smartphone Apps using Random Forest Learning

arXiv.org Machine Learning

Due to the popularity of context-awareness in the Internet of Things (IoT) and the recent advanced features in the most popular IoT device, i.e., smartphone, modeling and predicting personalized usage behavior based on relevant contexts can be highly useful in assisting them to carry out daily routines and activities. Usage patterns of different categories smartphone apps such as social networking, communication, entertainment, or daily life services related apps usually vary greatly between individuals. People use these apps differently in different contexts, such as temporal context, spatial context, individual mood and preference, work status, Internet connectivity like Wifi? status, or device related status like phone profile, battery level etc. Thus, we consider individuals' apps usage as a multi-class context-aware problem for personalized modeling and prediction. Random Forest learning is one of the most popular machine learning techniques to build a multi-class prediction model. Therefore, in this paper, we present an effective context-aware smartphone apps prediction model, and name it "AppsPred" using random forest machine learning technique that takes into account optimal number of trees based on such multi-dimensional contexts to build the resultant forest. The effectiveness of this model is examined by conducting experiments on smartphone apps usage datasets collected from individual users. The experimental results show that our AppsPred significantly outperforms other popular machine learning classification approaches like ZeroR, Naive Bayes, Decision Tree, Support Vector Machines, Logistic Regression while predicting smartphone apps in various context-aware test cases.


Hybrid Predictive Model: When an Interpretable Model Collaborates with a Black-box Model

arXiv.org Machine Learning

Interpretable machine learning has become a strong competitor for traditional black-box models. However, the possible loss of the predictive performance for gaining interpretability is often inevitable, putting practitioners in a dilemma of choosing between high accuracy (black-box models) and interpretability (interpretable models). In this work, we propose a novel framework for building a Hybrid Predictive Model (HPM) that integrates an interpretable model with any black-box model to combine their strengths. The interpretable model substitutes the black-box model on a subset of data where the black-box is overkill or nearly overkill, gaining transparency at no or low cost of the predictive accuracy. We design a principled objective function that considers predictive accuracy, model interpretability, and model transparency (defined as the percentage of data processed by the interpretable substitute.) Under this framework, we propose two hybrid models, one substituting with association rules and the other with linear models, and we design customized training algorithms for both models. We test the hybrid models on structured data and text data where interpretable models collaborate with various state-of-the-art black-box models. Results show that hybrid models obtain an efficient trade-off between transparency and predictive performance, characterized by our proposed efficient frontiers.