Plotting

Results


Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021

arXiv.org Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.


Beyond traditional assumptions in fair machine learning

arXiv.org Artificial Intelligence

After challenging the validity of these assumptions in real-world applications, we propose ways to move forward when they are violated. First, we show that group fairness criteria purely based on statistical properties of observed data are fundamentally limited. Revisiting this limitation from a causal viewpoint we develop a more versatile conceptual framework, causal fairness criteria, and first algorithms to achieve them. We also provide tools to analyze how sensitive a believed-to-be causally fair algorithm is to misspecifications of the causal graph. Second, we overcome the assumption that sensitive data is readily available in practice. To this end we devise protocols based on secure multi-party computation to train, validate, and contest fair decision algorithms without requiring users to disclose their sensitive data or decision makers to disclose their models. Finally, we also accommodate the fact that outcome labels are often only observed when a certain decision has been made. We suggest a paradigm shift away from training predictive models towards directly learning decisions to relax the traditional assumption that labels can always be recorded. The main contribution of this thesis is the development of theoretically substantiated and practically feasible methods to move research on fair machine learning closer to real-world applications.


Artificial Intelligence Enabled Software Defined Networking: A Comprehensive Overview

arXiv.org Artificial Intelligence

Software defined networking (SDN) represents a promising networking architecture that combines central management and network programmability. SDN separates the control plane from the data plane and moves the network management to a central point, called the controller, that can be programmed and used as the brain of the network. Recently, the research community has showed an increased tendency to benefit from the recent advancements in the artificial intelligence (AI) field to provide learning abilities and better decision making in SDN. In this study, we provide a detailed overview of the recent efforts to include AI in SDN. Our study showed that the research efforts focused on three main sub-fields of AI namely: machine learning, meta-heuristics and fuzzy inference systems. Accordingly, in this work we investigate their different application areas and potential use, as well as the improvements achieved by including AI-based techniques in the SDN paradigm.


FeatureAnalytics: An approach to derive relevant attributes for analyzing Android Malware

arXiv.org Machine Learning

Ever increasing number of Android malware, has always been a concern for cybersecurity professionals. Even though plenty of anti-malware solutions exist, a rational and pragmatic approach for the same is rare and has to be inspected further. In this paper, we propose a novel two-set feature selection approach based on Rough Set and Statistical Test named as RSST to extract relevant system calls. To address the problem of higher dimensional attribute set, we derived suboptimal system call space by applying the proposed feature selection method to maximize the separability between malware and benign samples. Comprehensive experiments conducted on a dataset consisting of 3500 samples with 30 RSST derived essential system calls resulted in an accuracy of 99.9%, Area Under Curve (AUC) of 1.0, with 1% False Positive Rate (FPR). However, other feature selectors (Information Gain, CFsSubsetEval, ChiSquare, FreqSel and Symmetric Uncertainty) used in the domain of malware analysis resulted in the accuracy of 95.5% with 8.5% FPR. Besides, empirical analysis of RSST derived system calls outperform other attributes such as permissions, opcodes, API, methods, call graphs, Droidbox attributes and network traces.