Goto

Collaborating Authors

Pattern Recognition


Neural Network Perception for Mobile Robot Guidance

Classics

Kluwer. See also Springer (https://www.springer.com/gp/book/9780792393733). See also: A Reply to Towell's Book Review of Neural Network Perception for Mobile Robot Guidance. Machine Learning, January 1995, Volume 18, Issue 1, pp 121–122 (https://link.springer.com/article/10.1007%2FBF00993825).



Learnability and the Vapnik-Chervonenkis dimension

Classics

Valiant’s learnability model is extended to learning classes of concepts defined by regions in Euclidean space E”. The methods in this paper lead to a unified treatment of some of Valiant’s results, along with previous results on distribution-free convergence of certain pattern recognition algorithms. It is shown that the essential condition for distribution-free learnability is finiteness of the Vapnik-Chervonenkis dimension, a simple combinatorial parameter of the class of concepts to be learned. Using this parameter, the complexity and closure properties of learnable classes are analyzed, and the necessary and sufftcient conditions are provided for feasible learnability.JACM, 36 (4), 929-65



QLISP: A language for the interactive development of complex systems

Classics

This paper presents a functional overview of the features and capabilities of QLISP, one of the newest of the current generation of very high level languages developed for use in Artificial Intelligence (AI) research.QLISP is both a programming language and an interactive programming environment. It embeds an extended version of QA4, an earlier AI language, in INTERLISP, a widely available version of LISP with a variety of sophisticated programming aids.The language features provided by QLISP include a variety of useful data types, an associative data base for the storage and retrieval of expressions, the ability to associate property lists with arbitrary expressions, a powerful pattern matcher based on a unification algorithm, pattern-directed function invocation, "teams" of pattern invoked functions, a sophisticated mechanism for breaking a data base into contexts, generators for associative data retrieval, and easy extensibility.System features available in QLISP include a very smooth interaction with the underlying INTERLISP language, a facility for aggregating multiple pattern matches, and features for interactive control of programs.A number of applications to which QLISP has been put are briefly discussed, and some directions for future development are presented.SRI Tech.Note 120, AI Center, SRI International, Inc., Menlo Park, Calif.



Pattern Recognition

Classics

Proceedings of the IEEE Workshop on Pattern Recognition, held at Dorado, Puerto Rico, Washington, DC: Thompson Book Co




Computers and Thought

Classics

E.A. Feigenbaum and J. Feldman (Eds.). Computers and Thought. McGraw-Hill, 1963. This collection includes twenty classic papers by such pioneers as A. M. Turing and Marvin Minsky who were behind the pivotal advances in artificially simulating human thought processes with computers. All Parts are available as downloadable pdf files; most individual chapters are also available separately. COMPUTING MACHINERY AND INTELLIGENCE. A. M. Turing. CHESS-PLAYING PROGRAMS AND THE PROBLEM OF COMPLEXITY. Allen Newell, J.C. Shaw and H.A. Simon. SOME STUDIES IN MACHINE LEARNING USING THE GAME OF CHECKERS. A. L. Samuel. EMPIRICAL EXPLORATIONS WITH THE LOGIC THEORY MACHINE: A CASE STUDY IN HEURISTICS. Allen Newell J.C. Shaw and H.A. Simon. REALIZATION OF A GEOMETRY-THEOREM PROVING MACHINE. H. Gelernter. EMPIRICAL EXPLORATIONS OF THE GEOMETRY-THEOREM PROVING MACHINE. H. Gelernter, J.R. Hansen, and D. W. Loveland. SUMMARY OF A HEURISTIC LINE BALANCING PROCEDURE. Fred M. Tonge. A HEURISTIC PROGRAM THAT SOLVES SYMBOLIC INTEGRATION PROBLEMS IN FRESHMAN CALCULUS. James R. Slagle. BASEBALL: AN AUTOMATIC QUESTION ANSWERER. Green, Bert F. Jr., Alice K. Wolf, Carol Chomsky, and Kenneth Laughery. INFERENTIAL MEMORY AS THE BASIS OF MACHINES WHICH UNDERSTAND NATURAL LANGUAGE. Robert K. Lindsay. PATTERN RECOGNITION BY MACHINE. Oliver G. Selfridge and Ulric Neisser. A PATTERN-RECOGNITION PROGRAM THAT GENERATES, EVALUATES, AND ADJUSTS ITS OWN OPERATORS. Leonard Uhr and Charles Vossler. GPS, A PROGRAM THAT SIMULATES HUMAN THOUGHT. Allen Newell and H.A. Simon. THE SIMULATION OF VERBAL LEARNING BEHAVIOR. Edward A. Feigenbaum. PROGRAMMING A MODEL OF HUMAN CONCEPT FORMULATION. Earl B. Hunt and Carl I. Hovland. SIMULATION OF BEHAVIOR IN THE BINARY CHOICE EXPERIMENT Julian Feldman. A MODEL OF THE TRUST INVESTMENT PROCESS. Geoffrey P. E. Clarkson. A COMPUTER MODEL OF ELEMENTARY SOCIAL BEHAVIOR. John T. Gullahorn and Jeanne E. Gullahorn. TOWARD INTELLIGENT MACHINES. Paul Armer. STEPS TOWARD ARTIFICIAL INTELLIGENCE. Marvin Minsky. A SELECTED DESCRIPTOR-INDEXED BIBLIOGRAPHY TO THE LITERATURE ON ARTIFICIAL INTELLIGENCE. Marvin Minsky.