Not enough data to create a plot.
Try a different view from the menu above.
Inrecent years, data science has become an increasingly popular field due to the explosion of data and the need to extract valuable insights from it. While traditional education can be expensive and time-consuming, many aspiring data scientists turn to YouTube to learn the necessary skills. In this article, we've compiled a list of the best YouTube channels for learning data science for free in 2023. We cover a range of topics, including mathematics, programming, data analysis, machine learning and deep learning, career tips and guidance, interview preparation, and staying updated with the latest trends in the field. Whether you're a beginner or an experienced data scientist, these channels can help you improve your skills and knowledge in data science without breaking the bank.
Check out our latest tutorial on how to build a speech-to-text system using ChatGPT and Python! Learn how to leverage the power of natural language processing and deep learning to convert audio to text with amazing accuracy. Please let me know your valuable feedback on the video by means of comments. Please like and share the video. Do not forget to subscribe to my channel for more educational videos.
Welcome to Machine Learning: Natural Language Processing in Python (Version 2). In part 1, which covers vector models and text preprocessing methods, you will learn about why vectors are so essential in data science and artificial intelligence. You will learn about various techniques for converting text into vectors, such as the CountVectorizer and TF-IDF, and you'll learn the basics of neural embedding methods like word2vec, and GloVe. Along the way, you'll also learn important text preprocessing steps, such as tokenization, stemming, and lemmatization. You'll be introduced briefly to classic NLP tasks such as parts-of-speech tagging.
Welcome to KGP Talkie's Natural Language Processing (NLP) course. It is designed to give you a complete understanding of Text Processing and Mining with the use of State-of-the-Art NLP algorithms in Python. We will learn Spacy in detail and we will also explore the uses of NLP in real life. This course covers the basics of NLP to advance topics like word2vec, GloVe, Deep Learning for NLP like CNN, ANN, and LSTM. I will also show you how you can optimize your ML code by using various tools of sklean in python.
Text classification describes a general class of problems such as predicting the sentiment of tweets and movie reviews, as well as classifying email as spam or not. Deep learning methods are proving very good at text classification, achieving state-of-the-art results on a suite of standard academic benchmark problems. In this post, you will discover some best practices to consider when developing deep learning models for text classification. Best Practices for Document Classification with Deep Learning Photo by storebukkebruse, some rights reserved. Take my free 7-day email crash course now (with code).
This course covers the basics of NLP to advance topics like word2vec, GloVe, Deep Learning for NLP like CNN, ANN, and LSTM. It is designed to give you a complete understanding of Text Processing and Mining with the use of State-of-the-Art NLP algorithms in Python. We will learn Spacy in detail and we will also explore the uses of NLP in real life. This course covers the basics of NLP to advance topics like word2vec, GloVe, Deep Learning for NLP like CNN, ANN, and LSTM. I will also show you how you can optimize your ML code by using various tools of sklean in python.
Saunders, Danielle (a:1:{s:5:"en_US";s:7:"SDL plc";})
The development of deep learning techniques has allowed Neural Machine Translation (NMT) models to become extremely powerful, given sufficient training data and training time. However, systems struggle when translating text from a new domain with a distinct style or vocabulary. Fine-tuning on in-domain data allows good domain adaptation, but requires sufficient relevant bilingual data. Even if this is available, simple fine-tuning can cause overfitting to new data and catastrophic forgetting of previously learned behaviour. We survey approaches to domain adaptation for NMT, particularly where a system may need to translate across multiple domains. We divide techniques into those revolving around data selection or generation, model architecture, parameter adaptation procedure, and inference procedure. We finally highlight the benefits of domain adaptation and multidomain adaptation techniques to other lines of NMT research.
You can follow me on Linkedin! Note: There are different angles to answer an interview question. The author of this newsletter does not try to find a reference that answers a question exhaustively. Rather, the author would like to share some quick insights and help the readers to think, practice and do further research as necessary. Source of video/answers: Stanford CS224N: NLP with Deep Learning Winter 2019 Lecture 8 -- Translation, Seq2Seq, Attention by Dr. Abby See Natural Language Processing with Attention Models by Deeplearning.ai
Welcome to Data Science: Transformers for Natural Language Processing. Ever since Transformers arrived on the scene, deep learning hasn't been the same. We've reached new state-of-the-art performance in many NLP tasks, such as machine translation, question-answering, entailment, named entity recognition, and more We've created multi-modal (text and image) models that can generate amazing art using only a text prompt We've solved a longstanding problem in molecular biology known as "protein structure prediction" In this course, you will learn very practical skills for applying transformers, and if you want, detailed theory behind how transformers and attention work. This is different from most other resources, which only cover the former. In this section, you will learn how to use transformers which were trained for you.