Deep Human-guided Conditional Variational Generative Modeling for Automated Urban Planning Artificial Intelligence

Urban planning designs land-use configurations and can benefit building livable, sustainable, safe communities. Inspired by image generation, deep urban planning aims to leverage deep learning to generate land-use configurations. However, urban planning is a complex process. Existing studies usually ignore the need of personalized human guidance in planning, and spatial hierarchical structure in planning generation. Moreover, the lack of large-scale land-use configuration samples poses a data sparsity challenge. This paper studies a novel deep human guided urban planning method to jointly solve the above challenges. Specifically, we formulate the problem into a deep conditional variational autoencoder based framework. In this framework, we exploit the deep encoder-decoder design to generate land-use configurations. To capture the spatial hierarchy structure of land uses, we enforce the decoder to generate both the coarse-grained layer of functional zones, and the fine-grained layer of POI distributions. To integrate human guidance, we allow humans to describe what they need as texts and use these texts as a model condition input. To mitigate training data sparsity and improve model robustness, we introduce a variational Gaussian embedding mechanism. It not just allows us to better approximate the embedding space distribution of training data and sample a larger population to overcome sparsity, but also adds more probabilistic randomness into the urban planning generation to improve embedding diversity so as to improve robustness. Finally, we present extensive experiments to validate the enhanced performances of our method.

Ensemble neuroevolution based approach for multivariate time series anomaly detection Artificial Intelligence

Multivariate time series anomaly detection is a very common problem in the field of failure prevention. Fast prevention means lower repair costs and losses. The amount of sensors in novel industry systems makes the anomaly detection process quite difficult for humans. Algorithms which automates the process of detecting anomalies are crucial in modern failure-prevention systems. Therefore, many machine and deep learning models have been designed to address this problem. Mostly, they are autoencoder-based architectures with some generative adversarial elements. In this work, a framework is shown which incorporates neuroevolution methods to boost the anomaly-detection scores of new and already known models. The presented approach adapts evolution strategies for evolving ensemble model, in which every single model works on a subgroup of data sensors. The next goal of neuroevolution is to optimise architecture and hyperparameters like window size, the number of layers, layer depths, etc. The proposed framework shows that it is possible to boost most of the anomaly detection deep learning models in a reasonable time and a fully automated mode. The tests were run on SWAT and WADI datasets. To our knowledge, this is the first approach in which an ensemble deep learning anomaly detection model is built in a fully automatic way using a neuroevolution strategy.

Time Series Anomaly Detection for Cyber-physical Systems via Neural System Identification and Bayesian Filtering Machine Learning

Recent advances in AIoT technologies have led to an increasing popularity of utilizing machine learning algorithms to detect operational failures for cyber-physical systems (CPS). In its basic form, an anomaly detection module monitors the sensor measurements and actuator states from the physical plant, and detects anomalies in these measurements to identify abnormal operation status. Nevertheless, building effective anomaly detection models for CPS is rather challenging as the model has to accurately detect anomalies in presence of highly complicated system dynamics and unknown amount of sensor noise. In this work, we propose a novel time series anomaly detection method called Neural System Identification and Bayesian Filtering (NSIBF) in which a specially crafted neural network architecture is posed for system identification, i.e., capturing the dynamics of CPS in a dynamical state-space model; then a Bayesian filtering algorithm is naturally applied on top of the "identified" state-space model for robust anomaly detection by tracking the uncertainty of the hidden state of the system recursively over time. We provide qualitative as well as quantitative experiments with the proposed method on a synthetic and three real-world CPS datasets, showing that NSIBF compares favorably to the state-of-the-art methods with considerable improvements on anomaly detection in CPS.

Graph Neural Network-Based Anomaly Detection in Multivariate Time Series Artificial Intelligence

Given high-dimensional time series data (e.g., sensor data), how can we detect anomalous events, such as system faults and attacks? More challengingly, how can we do this in a way that captures complex inter-sensor relationships, and detects and explains anomalies which deviate from these relationships? Recently, deep learning approaches have enabled improvements in anomaly detection in high-dimensional datasets; however, existing methods do not explicitly learn the structure of existing relationships between variables, or use them to predict the expected behavior of time series. Our approach combines a structure learning approach with graph neural networks, additionally using attention weights to provide explainability for the detected anomalies. Experiments on two real-world sensor datasets with ground truth anomalies show that our method detects anomalies more accurately than baseline approaches, accurately captures correlations between sensors, and allows users to deduce the root cause of a detected anomaly.

Adversarial Attacks and Mitigation for Anomaly Detectors of Cyber-Physical Systems Artificial Intelligence

The threats faced by cyber-physical systems (CPSs) in critical infrastructure have motivated research into a multitude of attack detection mechanisms, including anomaly detectors based on neural network models. The effectiveness of anomaly detectors can be assessed by subjecting them to test suites of attacks, but less consideration has been given to adversarial attackers that craft noise specifically designed to deceive them. While successfully applied in domains such as images and audio, adversarial attacks are much harder to implement in CPSs due to the presence of other built-in defence mechanisms such as rule checkers(or invariant checkers). In this work, we present an adversarial attack that simultaneously evades the anomaly detectors and rule checkers of a CPS. Inspired by existing gradient-based approaches, our adversarial attack crafts noise over the sensor and actuator values, then uses a genetic algorithm to optimise the latter, ensuring that the neural network and the rule checking system are both deceived.We implemented our approach for two real-world critical infrastructure testbeds, successfully reducing the classification accuracy of their detectors by over 50% on average, while simultaneously avoiding detection by rule checkers. Finally, we explore whether these attacks can be mitigated by training the detectors on adversarial samples.

Optimization of operation parameters towards sustainable WWTP based on deep reinforcement learning Artificial Intelligence

A large amount of wastewater has been produced nowadays. Wastewater treatment plants (WWTPs) are designed to eliminate pollutants and alleviate environmental pollution resulting from human activities. However, the construction and operation of WWTPs still have negative impacts. WWTPs are complex to control and optimize because of high nonlinearity and variation. This study used a novel technique, multi-agent deep reinforcement learning (DRL), to optimize dissolved oxygen (DO) and dosage in a hypothetical WWTP. The reward function is specially designed as LCA-based form to achieve sustainability optimization. Four scenarios: baseline, LCA-oriented, cost-oriented and effluent-oriented are considered. The result shows that optimization based on LCA has lowest environmental impacts. The comparison of different SRT indicates that a proper SRT can reduce negative impacts greatly. It is worth mentioning that the retrofitting of WWTPs should be implemented with the consideration of other environmental impacts except cost. Moreover, the comparison between DRL and genetic algorithm (GA) indicates that DRL can solve optimization problems effectively and has great extendibility. In a nutshell, there are still limits and shortcomings of this work, future studies are required.

Intrusion Detection for Industrial Control Systems: Evaluation Analysis and Adversarial Attacks Machine Learning

--Neural networks are increasingly used in security applications for intrusion detection on industrial control systems. In this work we examine two areas that must be considered for their effective use. Firstly, is their vulnerability to adversarial attacks when used in a time series setting. Secondly, is potential overestimation of performance arising from data leakage artefacts. T o investigate these areas we implement a long short-term memory (LSTM) based intrusion detection system (IDS) which effectively detects cyber-physical attacks on a water treatment testbed representing a strong baseline IDS. The first attacker is able to manipulate sensor readings on a subset of the Secure Water Treatment (SWaT) system. By creating a stream of adversarial data the attacker is able to hide the cyber-physical attacks from the IDS. For the cyber-physical attacks which are detected by the IDS, the attacker required on average 2.48 out of 12 total sensors to be compromised for the cyber-physical attacks to be hidden from the IDS. The second attacker model we explore is an L bounded attacker who can send fake readings to the IDS, but to remain imperceptible, limits their perturbations to the smallest L value needed. Additionally, we examine data leakage problems arising from tuning for F 1 score on the whole SWaT attack set and propose a method to tune detection parameters that does not utilise any attack data. If attack aftereffects are accounted for then our new parameter tuning method achieved an F 1 score of 0.811 0.0103. I NTRODUCTION Deep learning systems are known to be vulnerable to adversarial attacks at test time. By applying small changes to an input an attacker can cause a machine learning system to mis-classify with a high degree of success. There has been much work on both developing more powerful attacks [1] as well as defences [2]. However, the majority of adversarial machine learning research is focused on the image domain, with consideration of the different challenges that arise within other fields needed [3]. This phenomenon of adversarial examples becomes particularly pertinent when aiming to defend machine learn-Pre-print.

MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks Machine Learning

The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.

How to Use IoT Datasets in #AI Applications


Recently, google launched a Dataset search – which is a great resource to find Datasets. In this post, I list some IoT datasets which can be used for Machine Learning or Deep Learning applications. But finding datasets is only part of the story. A static dataset for IoT is not enough i.e. some of the interesting analysis is in streaming mode. To create an end to end streaming implementation from a given dataset, we need knowledge of full stack skills.

How to use IoT datasets in #AI applications (full stack)


Recently, google launched a Dataset search – which is a great resource to find Datasets. In this post, I list some IoT datasets which can be used for Machine Learning or Deep Learning applications. But finding datasets is only part of the story. A static dataset for IoT is not enough i.e. some of the interesting analysis is in streaming mode. To create an end to end streaming implementation from a given dataset, we need knowledge of full stack skills.