Goto

Collaborating Authors

Results


Artificial Intelligence: Research Impact on Key Industries; the Upper-Rhine Artificial Intelligence Symposium (UR-AI 2020)

arXiv.org Artificial Intelligence

The TriRhenaTech alliance presents a collection of accepted papers of the cancelled tri-national 'Upper-Rhine Artificial Inteeligence Symposium' planned for 13th May 2020 in Karlsruhe. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, and Offenburg, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.


Visual Methods for Sign Language Recognition: A Modality-Based Review

arXiv.org Artificial Intelligence

Sign language visual recognition from continuous multi-modal streams is still one of the most challenging fields. Recent advances in human actions recognition are exploiting the ascension of GPU-based learning from massive data, and are getting closer to human-like performances. They are then prone to creating interactive services for the deaf and hearing-impaired communities. A population that is expected to grow considerably in the years to come. This paper aims at reviewing the human actions recognition literature with the sign-language visual understanding as a scope. The methods analyzed will be mainly organized according to the different types of unimodal inputs exploited, their relative multi-modal combinations and pipeline steps. In each section, we will detail and compare the related datasets, approaches then distinguish the still open contribution paths suitable for the creation of sign language related services. Special attention will be paid to the approaches and commercial solutions handling facial expressions and continuous signing.


Hierarchical Image Classification using Entailment Cone Embeddings

arXiv.org Machine Learning

Image classification has been studied extensively, but there has been limited work in using unconventional, external guidance other than traditional image-label pairs for training. We present a set of methods for leveraging information about the semantic hierarchy embedded in class labels. We first inject label-hierarchy knowledge into an arbitrary CNN-based classifier and empirically show that availability of such external semantic information in conjunction with the visual semantics from images boosts overall performance. Taking a step further in this direction, we model more explicitly the label-label and label-image interactions using order-preserving embeddings governed by both Euclidean and hyperbolic geometries, prevalent in natural language, and tailor them to hierarchical image classification and representation learning. We empirically validate all the models on the hierarchical ETHEC dataset.


Learning Representations For Images With Hierarchical Labels

arXiv.org Machine Learning

Image classification has been studied extensively but there has been limited work in the direction of using non-conventional, external guidance other than traditional image-label pairs to train such models. In this thesis we present a set of methods to leverage information about the semantic hierarchy induced by class labels. In the first part of the thesis, we inject label-hierarchy knowledge to an arbitrary classifier and empirically show that availability of such external semantic information in conjunction with the visual semantics from images boosts overall performance. Taking a step further in this direction, we model more explicitly the label-label and label-image interactions by using order-preserving embedding-based models, prevalent in natural language, and tailor them to the domain of computer vision to perform image classification. Although, contrasting in nature, both the CNN-classifiers injected with hierarchical information, and the embedding-based models outperform a hierarchy-agnostic model on the newly presented, real-world ETH Entomological Collection image dataset.


A Comprehensive Survey of Deep Learning for Image Captioning

arXiv.org Machine Learning

These sources contain images that viewers would have to interpret themselves. Most images do not have a description, but the human can largely understand them without their detailed captions. However, machine needs to interpret some form of image captions if humans need automatic image captions from it. Image captioning is important for many reasons. For example, they can be used for automatic image indexing. Image indexing is important for Content-Based Image Retrieval (CBIR) and therefore, it can be applied to many areas, including biomedicine, commerce, the military, education, digital libraries, and web searching. Social media platforms such as Facebook and Twitter can directly generate descriptions from images. The descriptions can include where we are (e.g., beach, cafe), what we wear and importantly what we are doing there.


Joint Dictionaries for Zero-Shot Learning

AAAI Conferences

A classic approach toward zero-shot learning (ZSL) is to map the input domain to a set of semantically meaningful attributes that could be used later on to classify unseen classes of data (e.g. visual data). In this paper, we propose to learn a visual feature dictionary that has semantically meaningful atoms. Such a dictionary is learned via joint dictionary learning for the visual domain and the attribute domain, while enforcing the same sparse coding for both dictionaries. Our novel attribute aware formulation provides an algorithmic solution to the domain shift/hubness problem in ZSL. Upon learning the joint dictionaries, images from unseen classes can be mapped into the attribute space by finding the attribute aware joint sparse representation using solely the visual data. We demonstrate that our approach provides superior or comparable performance to that of the state of the art on benchmark datasets.