Goto

Collaborating Authors

Results


ModelArts 3.0: a Arue AI Accelerator

#artificialintelligence

HUAWEI CLOUD's Enterprise Intelligence (EI) has achieved strong results in numerous industry competitions and evaluations. HUAWEI CLOUD has invested heavily in basic research AI in three domains: computer vision, speech and semantics, and decision optimization. To help AI empower all industries, the ModelArts enabling platform supports plug-and-play deployment of HUAWEI CLOUD's research results in areas such as automatic machine learning, small sample learning, federated learning, and pre-training models. In the area of perception, HUAWEI CLOUD continues to be an industry-leader in ImageNet large-scale image classification, WebVision large-scale network image classification, MS-COCO two-dimensional object detection, nuScenes three-dimensional object detection, and visual pre-training model verification, including downstream classification, detection, and segmentation. Perception models driven by ModelArts have been widely used in sectors such as medical image analysis, oil and gas exploration, and fault detection in manufacturing. In cognition, HUAWEI CLOUD integrates industry data based on its expertise in semantic analysis and knowledge graphs.


How I failed machine learning in medical imaging -- shortcomings and recommendations

arXiv.org Machine Learning

Medical imaging is an important research field with many opportunities for improving patients' health. However, there are a number of challenges that are slowing down the progress of the field as a whole, such optimizing for publication. In this paper we reviewed several problems related to choosing datasets, methods, evaluation metrics, and publication strategies. With a review of literature and our own analysis, we show that at every step, potential biases can creep in. On a positive note, we also see that initiatives to counteract these problems are already being started. Finally we provide a broad range of recommendations on how to further these address problems in the future. For reproducibility, data and code for our analyses are available on \url{https://github.com/GaelVaroquaux/ml_med_imaging_failures}


A Comprehensive Review of Computer-aided Whole-slide Image Analysis: from Datasets to Feature Extraction, Segmentation, Classification, and Detection Approaches

arXiv.org Artificial Intelligence

With the development of computer-aided diagnosis (CAD) and image scanning technology, Whole-slide Image (WSI) scanners are widely used in the field of pathological diagnosis. Therefore, WSI analysis has become the key to modern digital pathology. Since 2004, WSI has been used more and more in CAD. Since machine vision methods are usually based on semi-automatic or fully automatic computers, they are highly efficient and labor-saving. The combination of WSI and CAD technologies for segmentation, classification, and detection helps histopathologists obtain more stable and quantitative analysis results, save labor costs and improve diagnosis objectivity. This paper reviews the methods of WSI analysis based on machine learning. Firstly, the development status of WSI and CAD methods are introduced. Secondly, we discuss publicly available WSI datasets and evaluation metrics for segmentation, classification, and detection tasks. Then, the latest development of machine learning in WSI segmentation, classification, and detection are reviewed continuously. Finally, the existing methods are studied, the applicabilities of the analysis methods are analyzed, and the application prospects of the analysis methods in this field are forecasted.