Goto

Collaborating Authors

Results


A Real-time Low-cost Artificial Intelligence System for Autonomous Spraying in Palm Plantations

#artificialintelligence

In precision crop protection, (target-orientated) object detection in image processing can help navigate Unmanned Aerial Vehicles (UAV, crop protection drones) to the right place to apply the pesticide. Unnecessary application of non-target areas could be avoided. Deep learning algorithms dominantly use in modern computer vision tasks which require high computing time, memory footprint, and power consumption. Based on the Edge Artificial Intelligence, we investigate the main three paths that lead to dealing with this problem, including hardware accelerators, efficient algorithms, and model compression. Finally, we integrate them and propose a solution based on a light deep neural network (DNN), called Ag-YOLO, which can make the crop protection UAV have the ability to target detection and autonomous operation.


A Real-time Low-cost Artificial Intelligence System for Autonomous Spraying in Palm Plantations

arXiv.org Artificial Intelligence

In precision crop protection, (target-orientated) object detection in image processing can help navigate Unmanned Aerial Vehicles (UAV, crop protection drones) to the right place to apply the pesticide. Unnecessary application of non-target areas could be avoided. Deep learning algorithms dominantly use in modern computer vision tasks which require high computing time, memory footprint, and power consumption. Based on the Edge Artificial Intelligence, we investigate the main three paths that lead to dealing with this problem, including hardware accelerators, efficient algorithms, and model compression. Finally, we integrate them and propose a solution based on a light deep neural network (DNN), called Ag-YOLO, which can make the crop protection UAV have the ability to target detection and autonomous operation. This solution is restricted in size, cost, flexible, fast, and energy-effective. The hardware is only 18 grams in weight and 1.5 watts in energy consumption, and the developed DNN model needs only 838 kilobytes of disc space. We tested the developed hardware and software in comparison to the tiny version of the state-of-art YOLOv3 framework, known as YOLOv3-Tiny to detect individual palm in a plantation. An average F1 score of 0.9205 at the speed of 36.5 frames per second (in comparison to similar accuracy at 18 frames per second and 8.66 megabytes of the YOLOv3-Tiny algorithm) was reached. This developed detection system is easily plugged into any machines already purchased as long as the machines have USB ports and run Linux Operating System.


Computer Vision in Agriculture

#artificialintelligence

The era of technology and innovations is rapidly transforming our lives today. The potential of such technologies is extending beyond our imagination. The advent of advanced technologies such as computer vision is contributing enormously across industries. Among several industries, the agriculture industry is one such sector that has started incorporating computer vision in their mode of operations. Agriculture is considered the economy-boosting sector that makes every nation stand out in the global market.


Deere's Farm Version of Facial Recognition Coming to Fields in 2021

#artificialintelligence

Agricultural equipment giant Deere & Co. next summer will debut in farm fields a solution that combines machine vision and machine learning, to distinguish weeds from plants. Agriculture giant Deere & Co. plans to roll out a system next summer that combines machine vision and machine learning to improve the identification of individual plants and weeds. Deere's Jahmy Hindman said neural network models could be trained to only spray weeds in crop fields, killing everything except genetically modified plants designed to survive chemical applications. Said Hindman, "We are interested in being able to manage each plant over the course of its life, minimizing inputs and maximizing productivity." The technology would take pictures of plants, and a machine cruising the field would make the decision to spray in just seconds.


Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things

arXiv.org Artificial Intelligence

In the Internet of Things (IoT) era, billions of sensors and devices collect and process data from the environment, transmit them to cloud centers, and receive feedback via the internet for connectivity and perception. However, transmitting massive amounts of heterogeneous data, perceiving complex environments from these data, and then making smart decisions in a timely manner are difficult. Artificial intelligence (AI), especially deep learning, is now a proven success in various areas including computer vision, speech recognition, and natural language processing. AI introduced into the IoT heralds the era of artificial intelligence of things (AIoT). This paper presents a comprehensive survey on AIoT to show how AI can empower the IoT to make it faster, smarter, greener, and safer. Specifically, we briefly present the AIoT architecture in the context of cloud computing, fog computing, and edge computing. Then, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving. Next, we summarize some promising applications of AIoT that are likely to profoundly reshape our world. Finally, we highlight the challenges facing AIoT and some potential research opportunities.


AI on the Bog: Monitoring and Evaluating Cranberry Crop Risk

arXiv.org Artificial Intelligence

Machine vision for precision agriculture has attracted considerable research interest in recent years. The goal of this paper is to develop an end-to-end cranberry health monitoring system to enable and support real time cranberry over-heating assessment to facilitate informed decisions that may sustain the economic viability of the farm. Toward this goal, we propose two main deep learning-based modules for: 1) cranberry fruit segmentation to delineate the exact fruit regions in the cranberry field image that are exposed to sun, 2) prediction of cloud coverage conditions and sun irradiance to estimate the inner temperature of exposed cranberries. We develop drone-based field data and ground-based sky data collection systems to collect video imagery at multiple time points for use in crop health analysis. Extensive evaluation on the data set shows that it is possible to predict exposed fruit's inner temperature with high accuracy (0.02% MAPE). The sun irradiance prediction error was found to be 8.41-20.36% MAPE in the 5-20 minutes time horizon. With 62.54% mIoU for segmentation and 13.46 MAE for counting accuracies in exposed fruit identification, this system is capable of giving informed feedback to growers to take precautionary action (e.g. irrigation) in identified crop field regions with higher risk of sunburn in the near future. Though this novel system is applied for cranberry health monitoring, it represents a pioneering step forward for efficient farming and is useful in precision agriculture beyond the problem of cranberry overheating.


Global Wheat Head Detection (GWHD) dataset: a large and diverse dataset of high resolution RGB labelled images to develop and benchmark wheat head detection methods

arXiv.org Machine Learning

Detection of wheat heads is an important task allowing to estimate pertinent traits including head population density and head characteristics such as sanitary state, size, maturity stage and the presence of awns. Several studies developed methods for wheat head detection from high-resolution RGB imagery. They are based on computer vision and machine learning and are generally calibrated and validated on limited datasets. However, variability in observational conditions, genotypic differences, development stages, head orientation represents a challenge in computer vision. Further, possible blurring due to motion or wind and overlap between heads for dense populations make this task even more complex. Through a joint international collaborative effort, we have built a large, diverse and well-labelled dataset, the Global Wheat Head detection (GWHD) dataset. It contains 4,700 high-resolution RGB images and 190,000 labelled wheat heads collected from several countries around the world at different growth stages with a wide range of genotypes. Guidelines for image acquisition, associating minimum metadata to respect FAIR principles and consistent head labelling methods are proposed when developing new head detection datasets. The GWHD is publicly available at http://www.global-wheat.com/ and aimed at developing and benchmarking methods for wheat head detection.


Croptracker - Computer Vision in Agtech - Pt 2

#artificialintelligence

Last week we took a look at computer vision; what it is, how it works, and some of the applications for computer vision in agtech. In case you missed last week's article, computer vision or machine vision typically refers to the use of machine learning or deep learning algorithms in image processing to allow a machine to "see" and identify objects around it. Different computer vision technologies may use a variety of camera types to act as the machine's "eyes" depending on the imaging requirements. In the case of fully autonomous vehicles, an accurate computer vision system is essential. In typical vehicles, hazard detection, navigation, and object avoidance all depend on a human operator.


Artificial Intelligence for Detecting Citrus Pests, Diseases and Disorders - Citrus Industry Magazine

#artificialintelligence

Artificial intelligence (AI) is increasingly common in electronic devices at home or work, in social media, video streaming services, electronic commerce, and in internet search engines. Now, AI is rapidly entering the farming scene. Growers using modern precision agriculture tools and techniques often face a barrage of high data volumes created by increasingly prolific, data-hungry electronic devices and services. Compare a smart phone's data needs with an old desktop phone. Or contrast an old-style paper map of your farm with today's digital geographic information system maps, showing multiple layers of every square inch of your fields, updated every week or month by automated aerial surveys with drones.


Tile2Vec: Unsupervised representation learning for remote sensing data

arXiv.org Machine Learning

Remote sensing lacks methods like the word vector representations and pre-trained networks that significantly boost performance across a wide range of natural language and computer vision tasks. To fill this gap, we introduce Tile2Vec, an unsupervised representation learning algorithm that extends the distributional hypothesis from natural language -- words appearing in similar contexts tend to have similar meanings -- to geospatial data. We demonstrate empirically that Tile2Vec learns semantically meaningful representations on three datasets. Our learned representations significantly improve performance in downstream classification tasks and similarly to word vectors, visual analogies can be obtained by simple arithmetic in the latent space.