Goto

Collaborating Authors

Results


An Empirical Survey of Data Augmentation for Limited Data Learning in NLP

arXiv.org Artificial Intelligence

NLP has achieved great progress in the past decade through the use of neural models and large labeled datasets. The dependence on abundant data prevents NLP models from being applied to low-resource settings or novel tasks where significant time, money, or expertise is required to label massive amounts of textual data. Recently, data augmentation methods have been explored as a means of improving data efficiency in NLP. To date, there has been no systematic empirical overview of data augmentation for NLP in the limited labeled data setting, making it difficult to understand which methods work in which settings. In this paper, we provide an empirical survey of recent progress on data augmentation for NLP in the limited labeled data setting, summarizing the landscape of methods (including token-level augmentations, sentence-level augmentations, adversarial augmentations, and hidden-space augmentations) and carrying out experiments on 11 datasets covering topics/news classification, inference tasks, paraphrasing tasks, and single-sentence tasks. Based on the results, we draw several conclusions to help practitioners choose appropriate augmentations in different settings and discuss the current challenges and future directions for limited data learning in NLP.


The Future of Computational Linguistics: On Beyond Alchemy

#artificialintelligence

Over the decades, fashions in Computational Linguistics have changed again and again, with major shifts in motivations, methods and applications. When digital computers first appeared, linguistic analysis adopted the new methods of information theory, which accorded well with the ideas that dominated psychology and philosophy. Then came formal language theory and the idea of AI as applied logic, in sync with the development of cognitive science. That was followed by a revival of 1950s-style empiricism—AI as applied statistics—which in turn was followed by the age of deep nets. There are signs that the climate is changing again, and we offer some thoughts about paths forward, especially for younger researchers who will soon be the leaders.


XFORMAL: A Benchmark for Multilingual Formality Style Transfer

arXiv.org Artificial Intelligence

We take the first step towards multilingual style transfer by creating and releasing XFORMAL, a benchmark of multiple formal reformulations of informal text in Brazilian Portuguese, French, and Italian. Results on XFORMAL suggest that state-of-the-art style transfer approaches perform close to simple baselines, indicating that style transfer is even more challenging when moving multilingual.



BERT: A Review of Applications in Natural Language Processing and Understanding

arXiv.org Artificial Intelligence

In this review, we describe the application of one of the most popular deep learning-based language models - BERT. The paper describes the mechanism of operation of this model, the main areas of its application to the tasks of text analytics, comparisons with similar models in each task, as well as a description of some proprietary models. In preparing this review, the data of several dozen original scientific articles published over the past few years, which attracted the most attention in the scientific community, were systematized. This survey will be useful to all students and researchers who want to get acquainted with the latest advances in the field of natural language text analysis.


DeLighT: Deep and Light-weight Transformer - Analytics India Magazine

#artificialintelligence

Transformer and its numerous variants achieve excellent performance today in various machine learning applications including sequence-to-sequence modeling, language modeling and computer vision tasks. The baseline transformer is still one of the most common choices for language modeling. Most transformer architectures comprise a basic transformer block in both the encoder and the decoder parts. A basic transformer block employs several layers of multi-head attention-based mechanisms to perform its task. One of the major differences between the transformer variants and the baseline transformer is the number of multi-head attention layers they incorporate.


Code-Mixing on Sesame Street: Dawn of the Adversarial Polyglots

arXiv.org Artificial Intelligence

Multilingual models have demonstrated impressive cross-lingual transfer performance. However, test sets like XNLI are monolingual at the example level. In multilingual communities, it is common for polyglots to code-mix when conversing with each other. Inspired by this phenomenon, we present two strong black-box adversarial attacks (one word-level, one phrase-level) for multilingual models that push their ability to handle code-mixed sentences to the limit. The former uses bilingual dictionaries to propose perturbations and translations of the clean example for sense disambiguation. The latter directly aligns the clean example with its translations before extracting phrases as perturbations. Our phrase-level attack has a success rate of 89.75% against XLM-R-large, bringing its average accuracy of 79.85 down to 8.18 on XNLI. Finally, we propose an efficient adversarial training scheme that trains in the same number of steps as the original model and show that it improves model accuracy.


Tensor2Tensor for Neural Machine Translation - Analytics India Magazine

#artificialintelligence

Tensor2Tensor, shortly known as T2T, is a library of pre-configured deep learning models and datasets. The Google Brain team has developed it to do deep learning research faster and more accessible. It uses TensorFlow throughout and aims to improve performance and usability strongly. Models can be trained on any of the CPU, single GPU, multiple GPU and TPU either locally or in the cloud. Tensor2Tensor models need minimal or zero configuration or device-specific code. It provides support for well-acclaimed models and datasets across different media platforms such as images, videos, text and audio.


An empirical analysis of phrase-based and neural machine translation

arXiv.org Artificial Intelligence

Two popular types of machine translation (MT) are phrase-based and neural machine translation systems. Both of these types of systems are composed of multiple complex models or layers. Each of these models and layers learns different linguistic aspects of the source language. However, for some of these models and layers, it is not clear which linguistic phenomena are learned or how this information is learned. For phrase-based MT systems, it is often clear what information is learned by each model, and the question is rather how this information is learned, especially for its phrase reordering model. For neural machine translation systems, the situation is even more complex, since for many cases it is not exactly clear what information is learned and how it is learned. To shed light on what linguistic phenomena are captured by MT systems, we analyze the behavior of important models in both phrase-based and neural MT systems. We consider phrase reordering models from phrase-based MT systems to investigate which words from inside of a phrase have the biggest impact on defining the phrase reordering behavior. Additionally, to contribute to the interpretability of neural MT systems we study the behavior of the attention model, which is a key component in neural MT systems and the closest model in functionality to phrase reordering models in phrase-based systems. The attention model together with the encoder hidden state representations form the main components to encode source side linguistic information in neural MT. To this end, we also analyze the information captured in the encoder hidden state representations of a neural MT system. We investigate the extent to which syntactic and lexical-semantic information from the source side is captured by hidden state representations of different neural MT architectures.


Entity-level Factual Consistency of Abstractive Text Summarization

arXiv.org Artificial Intelligence

A key challenge for abstractive summarization is ensuring factual consistency of the generated summary with respect to the original document. For example, state-of-the-art models trained on existing datasets exhibit entity hallucination, generating names of entities that are not present in the source document. We propose a set of new metrics to quantify the entity-level factual consistency of generated summaries and we show that the entity hallucination problem can be alleviated by simply filtering the training data. In addition, we propose a summary-worthy entity classification task to the training process as well as a joint entity and summary generation approach, which yield further improvements in entity level metrics.