Goto

Collaborating Authors

Results


Intrinsically Motivated Goal Exploration Processes with Automatic Curriculum Learning

arXiv.org Artificial Intelligence

Intrinsically motivated spontaneous exploration is a key enabler of autonomous lifelong learning in human children. It enables the discovery and acquisition of large repertoires of skills through self-generation, self-selection, self-ordering and self-experimentation of learning goals. We present an algorithmic approach called Intrinsically Motivated Goal Exploration Processes (IMGEP) to enable similar properties of autonomous or self-supervised learning in machines. The IMGEP algorithmic architecture relies on several principles: 1) self-generation of goals, generalized as fitness functions; 2) selection of goals based on intrinsic rewards; 3) exploration with incremental goal-parameterized policy search and exploitation of the gathered data with a batch learning algorithm; 4) systematic reuse of information acquired when targeting a goal for improving towards other goals. We present a particularly efficient form of IMGEP, called Modular Population-Based IMGEP, that uses a population-based policy and an object-centered modularity in goals and mutations. We provide several implementations of this architecture and demonstrate their ability to automatically generate a learning curriculum within several experimental setups including a real humanoid robot that can explore multiple spaces of goals with several hundred continuous dimensions. While no particular target goal is provided to the system, this curriculum allows the discovery of skills that act as stepping stone for learning more complex skills, e.g. nested tool use. We show that learning diverse spaces of goals with intrinsic motivations is more efficient for learning complex skills than only trying to directly learn these complex skills.


A Survey on Causal Inference

arXiv.org Artificial Intelligence

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.


14 Different Types of Learning in Machine Learning

#artificialintelligence

The use of an environment means that there is no fixed training dataset, rather a goal or set of goals that an agent is required to achieve, actions they may perform, and feedback about performance toward the goal. Some machine learning algorithms do not just experience a fixed dataset. For example, reinforcement learning algorithms interact with an environment, so there is a feedback loop between the learning system and its experiences.


A Survey of Machine Learning Applied to Computer Architecture Design

arXiv.org Artificial Intelligence

Machine learning has enabled significant benefits in diverse fields, but, with a few exceptions, has had limited impact on computer architecture. Recent work, however, has explored broader applicability for design, optimization, and simulation. Notably, machine learning based strategies often surpass prior state-of-the-art analytical, heuristic, and human-expert approaches. This paper reviews machine learning applied system-wide to simulation and run-time optimization, and in many individual components, including memory systems, branch predictors, networks-on-chip, and GPUs. The paper further analyzes current practice to highlight useful design strategies and identify areas for future work, based on optimized implementation strategies, opportune extensions to existing work, and ambitious long term possibilities. Taken together, these strategies and techniques present a promising future for increasingly automated architectural design.


Machine-Learning Research

AI Magazine

Machine-learning research has been making great progress in many directions. This article summarizes four of these directions and discusses some current open problems. The four directions are (1) the improvement of classification accuracy by learning ensembles of classifiers, (2) methods for scaling up supervised learning algorithms, (3) reinforcement learning, and (4) the learning of complex stochastic models.