Goto

Collaborating Authors

Results


The tensions between explainable AI and good public policy

#artificialintelligence

There are two reasons why. First, with machine learning in general and neural networks or deep learning in particular, there is often a trade-off between performance and explainability. The larger and more complex a model, the harder it will be to understand, even though its performance is generally better. Unfortunately, for complex situations with many interacting influences--which is true of many key areas of policy--machine learning will often be more useful the more of a black box it is. As a result, holding such systems accountable will almost always be a matter of post hoc monitoring and evaluation.


The Pragmatic Turn in Explainable Artificial Intelligence (XAI)

arXiv.org Artificial Intelligence

In this paper I argue that the search for explainable models and interpretable decisions in AI must be reformulated in terms of the broader project of offering a pragmatic and naturalistic account of understanding in AI. Intuitively, the purpose of providing an explanation of a model or a decision is to make it understandable to its stakeholders. But without a previous grasp of what it means to say that an agent understands a model or a decision, the explanatory strategies will lack a well-defined goal. Aside from providing a clearer objective for XAI, focusing on understanding also allows us to relax the factivity condition on explanation, which is impossible to fulfill in many machine learning models, and to focus instead on the pragmatic conditions that determine the best fit between a model and the methods and devices deployed to understand it. After an examination of the different types of understanding discussed in the philosophical and psychological literature, I conclude that interpretative or approximation models not only provide the best way to achieve the objectual understanding of a machine learning model, but are also a necessary condition to achieve post-hoc interpretability. This conclusion is partly based on the shortcomings of the purely functionalist approach to post-hoc interpretability that seems to be predominant in most recent literature.


Domain Knowledge Aided Explainable Artificial Intelligence for Intrusion Detection and Response

arXiv.org Artificial Intelligence

Artificial Intelligence (AI) has become an integral part of modern-day security solutions for its capability of learning very complex functions and handling "Big Data". However, the lack of explainability and interpretability of successful AI models is a key stumbling block when trust in a model's prediction is critical. This leads to human intervention, which in turn results in a delayed response or decision. While there have been major advancements in the speed and performance of AI-based intrusion detection systems, the response is still at human speed when it comes to explaining and interpreting a specific prediction or decision. In this work, we infuse popular domain knowledge (i.e., CIA principles) in our model for better explainability and validate the approach on a network intrusion detection test case. Our experimental results suggest that the infusion of domain knowledge provides better explainability as well as a faster decision or response. In addition, the infused domain knowledge generalizes the model to work well with unknown attacks, as well as open the path to adapt to a large stream of network traffic from numerous IoT devices.


Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI

arXiv.org Artificial Intelligence

In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.


One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI Explainability Techniques

arXiv.org Artificial Intelligence

As artificial intelligence and machine learning algorithms make further inroads into society, calls are increasing from multiple stakeholders for these algorithms to explain their outputs. At the same time, these stakeholders, whether they be affected citizens, government regulators, domain experts, or system developers, present different requirements for explanations. Toward addressing these needs, we introduce AI Explainability 360 (http://aix360.mybluemix.net/), an open-source software toolkit featuring eight diverse and state-of-the-art explainability methods and two evaluation metrics. Equally important, we provide a taxonomy to help entities requiring explanations to navigate the space of explanation methods, not only those in the toolkit but also in the broader literature on explainability. For data scientists and other users of the toolkit, we have implemented an extensible software architecture that organizes methods according to their place in the AI modeling pipeline. We also discuss enhancements to bring research innovations closer to consumers of explanations, ranging from simplified, more accessible versions of algorithms, to tutorials and an interactive web demo to introduce AI explainability to different audiences and application domains. Together, our toolkit and taxonomy can help identify gaps where more explainability methods are needed and provide a platform to incorporate them as they are developed.


A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.


Understanding artificial intelligence ethics and safety

arXiv.org Artificial Intelligence

A remarkable time of human promise has been ushered in by the convergence of the ever-expanding availability of big data, the soaring speed and stretch of cloud computing platforms, and the advancement of increasingly sophisticated machine learning algorithms. Innovations in AI are already leaving a mark on government by improving the provision of essential social goods and services from healthcare, education, and transportation to food supply, energy, and environmental management. These bounties are likely just the start. The prospect that progress in AI will help government to confront some of its most urgent challenges is exciting, but legitimate worries abound. As with any new and rapidly evolving technology, a steep learning curve means that mistakes and miscalculations will be made and that both unanticipated and harmful impacts will occur. This guide, written for department and delivery leads in the UK public sector and adopted by the British Government in its publication, 'Using AI in the Public Sector,' identifies the potential harms caused by AI systems and proposes concrete, operationalisable measures to counteract them. It stresses that public sector organisations can anticipate and prevent these potential harms by stewarding a culture of responsible innovation and by putting in place governance processes that support the design and implementation of ethical, fair, and safe AI systems. It also highlights the need for algorithmically supported outcomes to be interpretable by their users and made understandable to decision subjects in clear, non-technical, and accessible ways. Finally, it builds out a vision of human-centred and context-sensitive implementation that gives a central role to communication, evidence-based reasoning, situational awareness, and moral justifiability.


Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of Key Ideas and Publications, and Bibliography for Explainable AI

arXiv.org Artificial Intelligence

This is an integrative review that address the question, "What makes for a good explanation?" with reference to AI systems. Pertinent literatures are vast. Thus, this review is necessarily selective. That said, most of the key concepts and issues are expressed in this Report. The Report encapsulates the history of computer science efforts to create systems that explain and instruct (intelligent tutoring systems and expert systems). The Report expresses the explainability issues and challenges in modern AI, and presents capsule views of the leading psychological theories of explanation. Certain articles stand out by virtue of their particular relevance to XAI, and their methods, results, and key points are highlighted. It is recommended that AI/XAI researchers be encouraged to include in their research reports fuller details on their empirical or experimental methods, in the fashion of experimental psychology research reports: details on Participants, Instructions, Procedures, Tasks, Dependent Variables (operational definitions of the measures and metrics), Independent Variables (conditions), and Control Conditions.


What do we need to build explainable AI systems for the medical domain?

arXiv.org Machine Learning

Artificial intelligence (AI) generally and machine learning (ML) specifically demonstrate impressive practical success in many different application domains, e.g. in autonomous driving, speech recognition, or recommender systems. Deep learning approaches, trained on extremely large data sets or using reinforcement learning methods have even exceeded human performance in visual tasks, particularly on playing games such as Atari, or mastering the game of Go. Even in the medical domain there are remarkable results. The central problem of such models is that they are regarded as black-box models and even if we understand the underlying mathematical principles, they lack an explicit declarative knowledge representation, hence have difficulty in generating the underlying explanatory structures. This calls for systems enabling to make decisions transparent, understandable and explainable. A huge motivation for our approach are rising legal and privacy aspects. The new European General Data Protection Regulation entering into force on May 25th 2018, will make black-box approaches difficult to use in business. This does not imply a ban on automatic learning approaches or an obligation to explain everything all the time, however, there must be a possibility to make the results re-traceable on demand. In this paper we outline some of our research topics in the context of the relatively new area of explainable-AI with a focus on the application in medicine, which is a very special domain. This is due to the fact that medical professionals are working mostly with distributed heterogeneous and complex sources of data. In this paper we concentrate on three sources: images, *omics data and text. We argue that research in explainable-AI would generally help to facilitate the implementation of AI/ML in the medical domain, and specifically help to facilitate transparency and trust.