Goto

Collaborating Authors

Results


Machine Learning vs. AI: What's the Difference?

#artificialintelligence

Every time Netflix recommends a new binge-worthy show for you, or Amazon suggests a related product, or Google helps you find the name of that one actor that was on the tip of your tongue, you're experiencing machine learning at work. All of these real-world applications use a subset of artificial intelligence technology to find patterns, solve problems, and accomplish tasks. But although machine learning, deep learning, and artificial intelligence (AI) are related, the differences between them can be confusing. In this post, we'll break down the differences in these exciting technologies in plain language, and explore how they're relevant to your business. Let's start with some definitions: Artificial intelligence is the study of how to build programs that can solve problems in a similar way to humans; it's about replicating human problem-solving and intelligence in machines. When working to develop AI, scientists quickly realized that teaching an AI every single thing it needed to know to perform its intended function was a non-starter.


Learning AI If You Suck at Math - Part Eight - The Musician in the Machine

#artificialintelligence

"Attention takes two sentences, turns them into a matrix where the words of one sentence form the columns, and the words of another sentence form the rows, and then it makes matches, identifying relevant context." Check out the graphic from the Attention is All You Need paper below. It's two sentences, in different languages (French and English), translated by a professional human translator. The attention mechanism can generate a heat map, showing what French words the model focused on to generate the translated English words in the output.


Preserving Integrity in Online Social Networks

arXiv.org Artificial Intelligence

Online social networks provide a platform for sharing information and free expression. However, these networks are also used for malicious purposes, such as distributing misinformation and hate speech, selling illegal drugs, and coordinating sex trafficking or child exploitation. This paper surveys the state of the art in keeping online platforms and their users safe from such harm, also known as the problem of preserving integrity. This survey comes from the perspective of having to combat a broad spectrum of integrity violations at Facebook. We highlight the techniques that have been proven useful in practice and that deserve additional attention from the academic community. Instead of discussing the many individual violation types, we identify key aspects of the social-media eco-system, each of which is common to a wide variety violation types. Furthermore, each of these components represents an area for research and development, and the innovations that are found can be applied widely.


Welcome to the Next Level of Bullshit - Issue 89: The Dark Side

Nautilus

One of the most salient features of our culture is that there is so much bullshit." These are the opening words of the short book On Bullshit, written by the philosopher Harry Frankfurt. Fifteen years after the publication of this surprise bestseller, the rapid progress of research on artificial intelligence is forcing us to reconsider our conception of bullshit as a hallmark of human speech, with troubling implications. What do philosophical reflections on bullshit have to do with algorithms? As it turns out, quite a lot. In May this year the company OpenAI, co-founded by Elon Musk in 2015, introduced a new language model called GPT-3 (for "Generative Pre-trained Transformer 3"). It took the tech world by storm. On the surface, GPT-3 is like a supercharged version of the autocomplete feature on your smartphone; it can generate coherent text based on an initial input. But GPT-3's text-generating abilities go far beyond anything your phone is capable of.


The world of Artificial Intelligence

#artificialintelligence

Humans are the most advanced form of Artificial Intelligence (AI), with an ability to reproduce. Artificial Intelligence (AI) is no longer a theory but is part of our everyday life. Services like TikTok, Netflix, YouTube, Uber, Google Home Mini, and Amazon Echo are just a few instances of AI in our daily life. This field of knowledge always attracted me in strange ways. I have been an avid reader and I read a variety of subjects of non-fiction nature. I love to watch movies – not particularly sci-fi, but I liked Innerspace, Flubber, Robocop, Terminator, Avatar, Ex Machina, and Chappie. When I think of Artificial Intelligence, I see it from a lay perspective. I do not have an IT background.


The world of Artificial Intelligence

#artificialintelligence

Humans are the most advanced form of Artificial Intelligence (AI), with an ability to reproduce. Artificial Intelligence (AI) is no longer a theory but is part of our everyday life. Services like TikTok, Netflix, YouTube, Uber, Google Home Mini, and Amazon Echo are just a few instances of AI in our daily life. This field of knowledge always attracted me in strange ways. I have been an avid reader and I read a variety of subjects of non-fiction nature. I love to watch movies – not particularly sci-fi, but I liked Innerspace, Flubber, Robocop, Terminator, Avatar, Ex Machina, and Chappie. When I think of Artificial Intelligence, I see it from a lay perspective. I do not have an IT background.


Learning to summarize from human feedback

arXiv.org Artificial Intelligence

As language models become more powerful, training and evaluation are increasingly bottlenecked by the data and metrics used for a particular task. For example, summarization models are often trained to predict human reference summaries and evaluated using ROUGE, but both of these metrics are rough proxies for what we really care about---summary quality. In this work, we show that it is possible to significantly improve summary quality by training a model to optimize for human preferences. We collect a large, high-quality dataset of human comparisons between summaries, train a model to predict the human-preferred summary, and use that model as a reward function to fine-tune a summarization policy using reinforcement learning. We apply our method to a version of the TL;DR dataset of Reddit posts and find that our models significantly outperform both human reference summaries and much larger models fine-tuned with supervised learning alone. Our models also transfer to CNN/DM news articles, producing summaries nearly as good as the human reference without any news-specific fine-tuning. We conduct extensive analyses to understand our human feedback dataset and fine-tuned models. We establish that our reward model generalizes to new datasets, and that optimizing our reward model results in better summaries than optimizing ROUGE according to humans. We hope the evidence from our paper motivates machine learning researchers to pay closer attention to how their training loss affects the model behavior they actually want.


Linked Credibility Reviews for Explainable Misinformation Detection

arXiv.org Artificial Intelligence

In recent years, misinformation on the Web has become increasingly rampant. The research community has responded by proposing systems and challenges, which are beginning to be useful for (various subtasks of) detecting misinformation. However, most proposed systems are based on deep learning techniques which are fine-tuned to specific domains, are difficult to interpret and produce results which are not machine readable. This limits their applicability and adoption as they can only be used by a select expert audience in very specific settings. In this paper we propose an architecture based on a core concept of Credibility Reviews (CRs) that can be used to build networks of distributed bots that collaborate for misinformation detection. The CRs serve as building blocks to compose graphs of (i) web content, (ii) existing credibility signals --fact-checked claims and reputation reviews of websites--, and (iii) automatically computed reviews. We implement this architecture on top of lightweight extensions to Schema.org and services providing generic NLP tasks for semantic similarity and stance detection. Evaluations on existing datasets of social-media posts, fake news and political speeches demonstrates several advantages over existing systems: extensibility, domain-independence, composability, explainability and transparency via provenance. Furthermore, we obtain competitive results without requiring finetuning and establish a new state of the art on the Clef'18 CheckThat! Factuality task.


NLP Classification with Universal Language Model Fine-tuning (ULMFiT)

#artificialintelligence

Text classification is one of the important applications of NLP. Applications such as Sentiment Analysis and Identifying spam, bots, and offensive comments come under Text Classification. Until now, the approaches used for solving these problems included building Machine Learning or Deep Learning models from scratch, training them on your text data, and fine-tuning it with hyperparameters. Even though such models give decent results for applications like classifying whether a movie review is positive or negative, they may perform terribly if things become more ambiguous because most of the time there's just not enough amount of labeled data to learn from. Isn't the Imagenet using the same approach to classify the images?


aschern at SemEval-2020 Task 11: It Takes Three to Tango: RoBERTa, CRF, and Transfer Learning

arXiv.org Artificial Intelligence

We describe our system for SemEval-2020 Task 11 on Detection of Propaganda Techniques in News Articles. We developed ensemble models using RoBERTa-based neural architectures, additional CRF layers, transfer learning between the two subtasks, and advanced post-processing to handle the multi-label nature of the task, the consistency between nested spans, repetitions, and labels from similar spans in training. We achieved sizable improvements over baseline fine-tuned RoBERTa models, and the official evaluation ranked our system 3rd (almost tied with the 2nd) out of 36 teams on the span identification subtask with an F1 score of 0.491, and 2nd (almost tied with the 1st) out of 31 teams on the technique classification subtask with an F1 score of 0.62.