Collaborating Authors


OpenAI Introduces a Neural Network That Can Play 'Minecraft'


OpenAI has developed a neural network that can play Minecraft like humans. The Artificial Intelligence (AI) model was trained over 70,000 hours of miscellaneous in-game footage, along with a small database of videos in which specific in-game tasks were performed. Keyboard and mouse inputs are also recorded. OpenAI fine-tuned the AI, and now, it is skillful as a human-it can swim, hunt for animals, and eat. The AI can also do the pillar jump, where a player places a block of material below themselves in mid-air to gain more elevation.

OpenAI spent $160,000 on Upwork for Minecraft gamers to train a neural net


The computer program achieved the feat in ten minutes, half the time it would take a proficient human player to do it. How important might it be to master the "diamond tool" in Minecraft? Important enough to spend $160,000, according to OpenAI, the artificial intelligence startup. That is the amount of money that a team at OpenAI spent to hire players of Minecraft on the online job listings platform Upwork to submit videos of themselves playing the game. In a paper unveiled this week, "Video PreTraining (VPT): Learning to Act by Watching Unlabeled Online Videos," OpenAI researchers Bowen Baker and team break ground in the use of large datasets to train a neural network to mimic human keystrokes to solve different tasks in the video game.

16 best artificial intelligence games & AI gaming - Dataconomy


Do you love artificial intelligence games? Artificial intelligence (AI) has played an increasingly important and productive role in the gaming industry since IBM's computer program, Deep Blue, defeated Garry Kasparov in a 1997 chess match. AI is used to enhance game assets, behaviors, and settings in various ways. According to some experts, the most effective AI applications in gaming are those that aren't obvious. Every year, AI games come in a variety of forms. Games will utilize AI differently for each kind. It's more than likely that artificial intelligence is responsible for the replies and actions of non-playable characters. Because these characters must exhibit human-like competence, it is essential there. AI was previously used to foretell your next best move. AI enhances your game's visuals and solves gameplay issues (and for) you in this age of gaming. AI games, on the other hand, are not reliant upon AI. AI technologies improved significantly as a result of research for game development.

How Much AI Is Really Used in Video Games?


How close is the relationship between AI technology and video game development? From the exploratory adventure of open-world games to the comforting loop of online slots, the majority of video games use AI in some way, shape, or form; be it NPC interaction, enemy behavior, or otherwise. Contrary to its portrayal in most forms of entertainment media, AI isn't restricted to robots and supercomputers. Instead, it's a relatively ubiquitous technology, especially when it comes to gaming. As a matter of fact, you could go as far as saying that AI and video games likely wouldn't exist without each other.

Why games may not be the best benchmark for AI


Did you miss a session from the Future of Work Summit? In 2019, San Francisco-based AI research lab OpenAI held a tournament to tout the prowess of OpenAI Five, a system designed to play the multiplayer battle arena game Dota 2. OpenAI Five defeated a team of professional players -- twice. And when made publicly available, OpenAI Five managed to win against 99.4% of people who played against it online. OpenAI has invested heavily in games for research, developing libraries like CoinRun and Neural MMO, a simulator that plops AI in the middle of an RPG-like world. But that approach is changing.

Spatial State-Action Features for General Games Artificial Intelligence

In many board games and other abstract games, patterns have been used as features that can guide automated game-playing agents. Such patterns or features often represent particular configurations of pieces, empty positions, etc., which may be relevant for a game's strategies. Their use has been particularly prevalent in the game of Go, but also many other games used as benchmarks for AI research. Simple, linear policies of such features are unlikely to produce state-of-the-art playing strength like the deep neural networks that have been more commonly used in recent years do. However, they typically require significantly fewer resources to train, which is paramount for large-scale studies of hundreds to thousands of distinct games. In this paper, we formulate a design and efficient implementation of spatial state-action features for general games. These are patterns that can be trained to incentivise or disincentivise actions based on whether or not they match variables of the state in a local area around action variables. We provide extensive details on several design and implementation choices, with a primary focus on achieving a high degree of generality to support a wide variety of different games using different board geometries or other graphs. Secondly, we propose an efficient approach for evaluating active features for any given set of features. In this approach, we take inspiration from heuristics used in problems such as SAT to optimise the order in which parts of patterns are matched and prune unnecessary evaluations. An empirical evaluation on 33 distinct games in the Ludii general game system demonstrates the efficiency of this approach in comparison to a naive baseline, as well as a baseline based on prefix trees.

Player of Games Artificial Intelligence

Games have a long history of serving as a benchmark for progress in artificial intelligence. Recently, approaches using search and learning have shown strong performance across a set of perfect information games, and approaches using game-theoretic reasoning and learning have shown strong performance for specific imperfect information poker variants. We introduce Player of Games, a general-purpose algorithm that unifies previous approaches, combining guided search, self-play learning, and game-theoretic reasoning. Player of Games is the first algorithm to achieve strong empirical performance in large perfect and imperfect information games -- an important step towards truly general algorithms for arbitrary environments. We prove that Player of Games is sound, converging to perfect play as available computation time and approximation capacity increases. Player of Games reaches strong performance in chess and Go, beats the strongest openly available agent in heads-up no-limit Texas hold'em poker (Slumbot), and defeats the state-of-the-art agent in Scotland Yard, an imperfect information game that illustrates the value of guided search, learning, and game-theoretic reasoning.

How is AI Transforming the Future of the Gaming Industry?


AI in gaming means adaptive as well as responsive video game experiences facilitated through non-playable characters behaving creatively as if they are being controlled by a human game player. From the software that controlled a Pong paddle or a Pac-Man ghost to the universe-constructing algorithms of the space exploration Elite, Artificial intelligence (AI) in gaming isn't a recent innovation. It was as early as 1949, when a cryptographer Claude Shannon pondered the one-player chess game, on a computer. Gaming has been an important key for the development of AI. Researchers have been employing its technology in unique and interesting ways for decades.

AI in Games: Techniques, Challenges and Opportunities Artificial Intelligence

With breakthrough of AlphaGo, AI in human-computer game has become a very hot topic attracting researchers all around the world, which usually serves as an effective standard for testing artificial intelligence. Various game AI systems (AIs) have been developed such as Libratus, OpenAI Five and AlphaStar, beating professional human players. In this paper, we survey recent successful game AIs, covering board game AIs, card game AIs, first-person shooting game AIs and real time strategy game AIs. Through this survey, we 1) compare the main difficulties among different kinds of games for the intelligent decision making field ; 2) illustrate the mainstream frameworks and techniques for developing professional level AIs; 3) raise the challenges or drawbacks in the current AIs for intelligent decision making; and 4) try to propose future trends in the games and intelligent decision making techniques. Finally, we hope this brief review can provide an introduction for beginners, inspire insights for researchers in the filed of AI in games.

Search in Imperfect Information Games Artificial Intelligence

From the very dawn of the field, search with value functions was a fundamental concept of computer games research. Turing's chess algorithm from 1950 was able to think two moves ahead, and Shannon's work on chess from $1950$ includes an extensive section on evaluation functions to be used within a search. Samuel's checkers program from 1959 already combines search and value functions that are learned through self-play and bootstrapping. TD-Gammon improves upon those ideas and uses neural networks to learn those complex value functions -- only to be again used within search. The combination of decision-time search and value functions has been present in the remarkable milestones where computers bested their human counterparts in long standing challenging games -- DeepBlue for Chess and AlphaGo for Go. Until recently, this powerful framework of search aided with (learned) value functions has been limited to perfect information games. As many interesting problems do not provide the agent perfect information of the environment, this was an unfortunate limitation. This thesis introduces the reader to sound search for imperfect information games.