Goto

Collaborating Authors

Results


State of AI Ethics Report (Volume 6, February 2022)

arXiv.org Artificial Intelligence

This report from the Montreal AI Ethics Institute (MAIEI) covers the most salient progress in research and reporting over the second half of 2021 in the field of AI ethics. Particular emphasis is placed on an "Analysis of the AI Ecosystem", "Privacy", "Bias", "Social Media and Problematic Information", "AI Design and Governance", "Laws and Regulations", "Trends", and other areas covered in the "Outside the Boxes" section. The two AI spotlights feature application pieces on "Constructing and Deconstructing Gender with AI-Generated Art" as well as "Will an Artificial Intellichef be Cooking Your Next Meal at a Michelin Star Restaurant?". Given MAIEI's mission to democratize AI, submissions from external collaborators have featured, such as pieces on the "Challenges of AI Development in Vietnam: Funding, Talent and Ethics" and using "Representation and Imagination for Preventing AI Harms". The report is a comprehensive overview of what the key issues in the field of AI ethics were in 2021, what trends are emergent, what gaps exist, and a peek into what to expect from the field of AI ethics in 2022. It is a resource for researchers and practitioners alike in the field to set their research and development agendas to make contributions to the field of AI ethics.


MusIAC: An extensible generative framework for Music Infilling Applications with multi-level Control

arXiv.org Artificial Intelligence

We present a novel music generation framework for music infilling, with a user friendly interface. Infilling refers to the task of generating musical sections given the surrounding multi-track music. The proposed transformer-based framework is extensible for new control tokens as the added music control tokens such as tonal tension per bar and track polyphony level in this work. We explore the effects of including several musically meaningful control tokens, and evaluate the results using objective metrics related to pitch and rhythm. Our results demonstrate that adding additional control tokens helps to generate music with stronger stylistic similarities to the original music. It also provides the user with more control to change properties like the music texture and tonal tension in each bar compared to previous research which only provided control for track density. We present the model in a Google Colab notebook to enable interactive generation.


LaMDA: Language Models for Dialog Applications

arXiv.org Artificial Intelligence

We present LaMDA: Language Models for Dialog Applications. LaMDA is a family of Transformer-based neural language models specialized for dialog, which have up to 137B parameters and are pre-trained on 1.56T words of public dialog data and web text. While model scaling alone can improve quality, it shows less improvements on safety and factual grounding. We demonstrate that fine-tuning with annotated data and enabling the model to consult external knowledge sources can lead to significant improvements towards the two key challenges of safety and factual grounding. The first challenge, safety, involves ensuring that the model's responses are consistent with a set of human values, such as preventing harmful suggestions and unfair bias. We quantify safety using a metric based on an illustrative set of human values, and we find that filtering candidate responses using a LaMDA classifier fine-tuned with a small amount of crowdworker-annotated data offers a promising approach to improving model safety. The second challenge, factual grounding, involves enabling the model to consult external knowledge sources, such as an information retrieval system, a language translator, and a calculator. We quantify factuality using a groundedness metric, and we find that our approach enables the model to generate responses grounded in known sources, rather than responses that merely sound plausible. Finally, we explore the use of LaMDA in the domains of education and content recommendations, and analyze their helpfulness and role consistency.


Unsupervised Audio Source Separation Using Differentiable Parametric Source Models

arXiv.org Artificial Intelligence

Supervised deep learning approaches to underdetermined audio source separation achieve state-of-the-art performance but require a dataset of mixtures along with their corresponding isolated source signals. Such datasets can be extremely costly to obtain for musical mixtures. This raises a need for unsupervised methods. We propose a novel unsupervised model-based deep learning approach to musical source separation. Each source is modelled with a differentiable parametric source-filter model. A neural network is trained to reconstruct the observed mixture as a sum of the sources by estimating the source models' parameters given their fundamental frequencies. At test time, soft masks are obtained from the synthesized source signals. The experimental evaluation on a vocal ensemble separation task shows that the proposed method outperforms learning-free methods based on nonnegative matrix factorization and a supervised deep learning baseline. Integrating domain knowledge in the form of source models into a data-driven method leads to high data efficiency: the proposed approach achieves good separation quality even when trained on less than three minutes of audio. This work makes powerful deep learning based separation usable in scenarios where training data with ground truth is expensive or nonexistent.


Can Machines Generate Personalized Music? A Hybrid Favorite-aware Method for User Preference Music Transfer

arXiv.org Artificial Intelligence

Abstract--User preference music transfer (UPMT) is a new problem in music style transfer that can be applied to many scenarios but remains understudied. Transferring an arbitrary song to fit a user's preferences increases musical diversity and Most music style transfer approaches rely on datadriven methods. In general, however, constructing a large training Figure 1: A demonstration of UPMT: Transferring symbolic input music dataset is challenging because users can rarely provide enough of to new symbolic music that fits a user's preferences based on features their favorite songs. To address this problem, this paper proposes of their favorite music. For example, Marino et al. [17] used prior semantic knowledge in the form of knowledge graphs HERE has been recent growth in research around music style transfer, a technique that transfers the style of to improve image classification performance. Donadello et al. one piece of music to another based on different levels of [18] extracted semantic representations in a knowledge base music representations [1]. Music style transfer is considered to enhance the quality of recommender systems. Despite these important because it increases music variety by reproducing advances, the approaches cannot be directly applied to music, existing music in a creative way.


LSTM-RPA: A Simple but Effective Long Sequence Prediction Algorithm for Music Popularity Prediction

arXiv.org Artificial Intelligence

The big data about music history contains information about time and users' behavior. Researchers could predict the trend of popular songs accurately by analyzing this data. The traditional trend prediction models can better predict the short trend than the long trend. In this paper, we proposed the improved LSTM Rolling Prediction Algorithm (LSTM-RPA), which combines LSTM historical input with current prediction results as model input for next time prediction. Meanwhile, this algorithm converts the long trend prediction task into multiple short trend prediction tasks. The evaluation results show that the LSTM-RPA model increased F score by 13.03%, 16.74%, 11.91%, 18.52%, compared with LSTM, BiLSTM, GRU and RNN.


Logical Activation Functions: Logit-space equivalents of Boolean Operators

arXiv.org Artificial Intelligence

Neuronal representations within artificial neural networks are commonly understood as logits, representing the log-odds score of presence (versus absence) of features within the stimulus. Under this interpretation, we can derive the probability $P(x_0 \land x_1)$ that a pair of independent features are both present in the stimulus from their logits. By converting the resulting probability back into a logit, we obtain a logit-space equivalent of the AND operation. However, since this function involves taking multiple exponents and logarithms, it is not well suited to be directly used within neural networks. We thus constructed an efficient approximation named $\text{AND}_\text{AIL}$ (the AND operator Approximate for Independent Logits) utilizing only comparison and addition operations, which can be deployed as an activation function in neural networks. Like MaxOut, $\text{AND}_\text{AIL}$ is a generalization of ReLU to two-dimensions. Additionally, we constructed efficient approximations of the logit-space equivalents to the OR and XNOR operators. We deployed these new activation functions, both in isolation and in conjunction, and demonstrated their effectiveness on a variety of tasks including image classification, transfer learning, abstract reasoning, and compositional zero-shot learning.


Real-Time Learning from An Expert in Deep Recommendation Systems with Marginal Distance Probability Distribution

arXiv.org Machine Learning

Recommendation systems play an important role in today's digital world. They have found applications in various applications such as music platforms, e.g., Spotify, and movie streaming services, e.g., Netflix. Less research effort has been devoted to physical exercise recommendation systems. Sedentary lifestyles have become the major driver of several diseases as well as healthcare costs. In this paper, we develop a recommendation system for daily exercise activities to users based on their history, profile and similar users. The developed recommendation system uses a deep recurrent neural network with user-profile attention and temporal attention mechanisms. Moreover, exercise recommendation systems are significantly different from streaming recommendation systems in that we are not able to collect click feedback from the participants in exercise recommendation systems. Thus, we propose a real-time, expert-in-the-loop active learning procedure. The active learners calculate the uncertainty of the recommender at each time step for each user and ask an expert for a recommendation when the certainty is low. In this paper, we derive the probability distribution function of marginal distance, and use it to determine when to ask experts for feedback. Our experimental results on a mHealth dataset show improved accuracy after incorporating the real-time active learner with the recommendation system.


Controllable Dialogue Generation with Disentangled Multi-grained Style Specification and Attribute Consistency Reward

arXiv.org Artificial Intelligence

Controllable text generation is an appealing but challenging task, which allows users to specify particular attributes of the generated outputs. In this paper, we propose a controllable dialogue generation model to steer response generation under multi-attribute constraints. Specifically, we define and categorize the commonly used control attributes into global and local ones, which possess different granularities of effects on response generation. Then, we significantly extend the conventional seq2seq framework by introducing a novel two-stage decoder, which first uses a multi-grained style specification layer to impose the stylistic constraints and determine word-level control states of responses based on the attributes, and then employs a response generation layer to generate final responses maintaining both semantic relevancy to the contexts and fidelity to the attributes. Furthermore, we train our model with an attribute consistency reward to promote response control with explicit supervision signals. Extensive experiments and in-depth analyses on two datasets indicate that our model can significantly outperform competitive baselines in terms of response quality, content diversity and controllability.


Sequential Modelling with Applications to Music Recommendation, Fact-Checking, and Speed Reading

arXiv.org Artificial Intelligence

Sequential modelling entails making sense of sequential data, which naturally occurs in a wide array of domains. One example is systems that interact with users, log user actions and behaviour, and make recommendations of items of potential interest to users on the basis of their previous interactions. In such cases, the sequential order of user interactions is often indicative of what the user is interested in next. Similarly, for systems that automatically infer the semantics of text, capturing the sequential order of words in a sentence is essential, as even a slight re-ordering could significantly alter its original meaning. This thesis makes methodological contributions and new investigations of sequential modelling for the specific application areas of systems that recommend music tracks to listeners and systems that process text semantics in order to automatically fact-check claims, or "speed read" text for efficient further classification.