Collaborating Authors


Amazon SageMaker tutorial and model


This code pattern describes a way to gain insights by using Watson OpenScale and a SageMaker machine learning model. It explains how to create a logistic regression model using Amazon SageMaker with data from the UC Irvine machine learning database. The pattern uses Watson OpenScale to bind the machine learning model deployed in the AWS cloud, create a subscription, and perform payload and feedback logging. With Watson OpenScale, you can monitor model quality and log payloads, regardless of where the model is hosted. This code pattern uses the example of an Amazon Web Service (AWS) SageMaker model, which demonstrates the independent and open nature of Watson OpenScale.