Goto

Collaborating Authors

Results


Latent gaze information in highly dynamic decision-tasks

arXiv.org Artificial Intelligence

Digitization is penetrating more and more areas of life. Tasks are increasingly being completed digitally, and are therefore not only fulfilled faster, more efficiently but also more purposefully and successfully. The rapid developments in the field of artificial intelligence in recent years have played a major role in this, as they brought up many helpful approaches to build on. At the same time, the eyes, their movements, and the meaning of these movements are being progressively researched. The combination of these developments has led to exciting approaches. In this dissertation, I present some of these approaches which I worked on during my Ph.D. First, I provide insight into the development of models that use artificial intelligence to connect eye movements with visual expertise. This is demonstrated for two domains or rather groups of people: athletes in decision-making actions and surgeons in arthroscopic procedures. The resulting models can be considered as digital diagnostic models for automatic expertise recognition. Furthermore, I show approaches that investigate the transferability of eye movement patterns to different expertise domains and subsequently, important aspects of techniques for generalization. Finally, I address the temporal detection of confusion based on eye movement data. The results suggest the use of the resulting model as a clock signal for possible digital assistance options in the training of young professionals. An interesting aspect of my research is that I was able to draw on very valuable data from DFB youth elite athletes as well as on long-standing experts in arthroscopy. In particular, the work with the DFB data attracted the interest of radio and print media, namely DeutschlandFunk Nova and SWR DasDing. All resulting articles presented here have been published in internationally renowned journals or at conferences.


The impact of feature importance methods on the interpretation of defect classifiers

arXiv.org Artificial Intelligence

Abstract--Classifier specific (CS) and classifier agnostic (CA) feature importance methods are widely used (often interchangeably) by prior studies to derive feature importance ranks from a defect classifier. However, different feature importance methods are likely to compute different feature importance ranks even for the same dataset and classifier. Hence such interchangeable use of feature importance methods can lead to conclusion instabilities unless there is a strong agreement among different methods. Therefore, in this paper, we evaluate the agreement between the feature importance ranks associated with the studied classifiers through a case study of 18 software projects and six commonly used classifiers. We find that: 1) The computed feature importance ranks by CA and CS methods do not always strongly agree with each other. Such findings raise concerns about the stability of conclusions across replicated studies. We further observe that the commonly used defect datasets are rife with feature interactions and these feature interactions impact the computed feature importance ranks of the CS methods (not the CA methods). We demonstrate that removing these feature interactions, even with simple methods like CFS improves agreement between the computed feature importance ranks of CA and CS methods. In light of our findings, we provide guidelines for stakeholders and practitioners when performing model interpretation and directions for future research, e.g., future research is needed to investigate the impact of advanced feature interaction removal methods on computed feature importance ranks of different CS methods. We note, however, that a CS method is not always readily available for Defect classifiers are widely used by many large software corporations a given classifier. Defect classifiers are commonly and deep neural networks do not have a widely accepted CS interpreted to uncover insights to improve software quality. Therefore it is the feature importance ranks of different classifiers is pivotal that these generated insights are reliable. Such CA methods measure the contribution of each feature a feature importance method to compute a ranking of feature towards a classifier's predictions. These measure the contribution of each feature by effecting changes to feature importance ranks reflect the order in which the studied that particular feature in the dataset and observing its impact on features contribute to the predictive capability of the studied the outcome. The primary advantage of CA methods is that they classifier [14].


A Survey on Hyperdimensional Computing aka Vector Symbolic Architectures, Part II: Applications, Cognitive Models, and Challenges

arXiv.org Artificial Intelligence

This is Part II of the two-part comprehensive survey devoted to a computing framework most commonly known under the names Hyperdimensional Computing and Vector Symbolic Architectures (HDC/VSA). Both names refer to a family of computational models that use high-dimensional distributed representations and rely on the algebraic properties of their key operations to incorporate the advantages of structured symbolic representations and vector distributed representations. Holographic Reduced Representations is an influential HDC/VSA model that is well-known in the machine learning domain and often used to refer to the whole family. However, for the sake of consistency, we use HDC/VSA to refer to the area. Part I of this survey covered foundational aspects of the area, such as historical context leading to the development of HDC/VSA, key elements of any HDC/VSA model, known HDC/VSA models, and transforming input data of various types into high-dimensional vectors suitable for HDC/VSA. This second part surveys existing applications, the role of HDC/VSA in cognitive computing and architectures, as well as directions for future work. Most of the applications lie within the machine learning/artificial intelligence domain, however we also cover other applications to provide a thorough picture. The survey is written to be useful for both newcomers and practitioners.


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.


Forecasting: theory and practice

arXiv.org Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.


Deep Learning Interviews: Hundreds of fully solved job interview questions from a wide range of key topics in AI

arXiv.org Artificial Intelligence

The second edition of Deep Learning Interviews is home to hundreds of fully-solved problems, from a wide range of key topics in AI. It is designed to both rehearse interview or exam specific topics and provide machine learning MSc / PhD. students, and those awaiting an interview a well-organized overview of the field. The problems it poses are tough enough to cut your teeth on and to dramatically improve your skills-but they're framed within thought-provoking questions and engaging stories. That is what makes the volume so specifically valuable to students and job seekers: it provides them with the ability to speak confidently and quickly on any relevant topic, to answer technical questions clearly and correctly, and to fully understand the purpose and meaning of interview questions and answers. Those are powerful, indispensable advantages to have when walking into the interview room. The book's contents is a large inventory of numerous topics relevant to DL job interviews and graduate level exams. That places this work at the forefront of the growing trend in science to teach a core set of practical mathematical and computational skills. It is widely accepted that the training of every computer scientist must include the fundamental theorems of ML, and AI appears in the curriculum of nearly every university. This volume is designed as an excellent reference for graduates of such programs.


Towards a Science of Human-AI Decision Making: A Survey of Empirical Studies

arXiv.org Artificial Intelligence

As AI systems demonstrate increasingly strong predictive performance, their adoption has grown in numerous domains. However, in high-stakes domains such as criminal justice and healthcare, full automation is often not desirable due to safety, ethical, and legal concerns, yet fully manual approaches can be inaccurate and time consuming. As a result, there is growing interest in the research community to augment human decision making with AI assistance. Besides developing AI technologies for this purpose, the emerging field of human-AI decision making must embrace empirical approaches to form a foundational understanding of how humans interact and work with AI to make decisions. To invite and help structure research efforts towards a science of understanding and improving human-AI decision making, we survey recent literature of empirical human-subject studies on this topic. We summarize the study design choices made in over 100 papers in three important aspects: (1) decision tasks, (2) AI models and AI assistance elements, and (3) evaluation metrics. For each aspect, we summarize current trends, discuss gaps in current practices of the field, and make a list of recommendations for future research. Our survey highlights the need to develop common frameworks to account for the design and research spaces of human-AI decision making, so that researchers can make rigorous choices in study design, and the research community can build on each other's work and produce generalizable scientific knowledge. We also hope this survey will serve as a bridge for HCI and AI communities to work together to mutually shape the empirical science and computational technologies for human-AI decision making.


An overview of active learning methods for insurance with fairness appreciation

arXiv.org Machine Learning

This paper addresses and solves some challenges in the adoption of machine learning in insurance with the democratization of model deployment. The first challenge is reducing the labelling effort (hence focusing on the data quality) with the help of active learning, a feedback loop between the model inference and an oracle: as in insurance the unlabeled data is usually abundant, active learning can become a significant asset in reducing the labelling cost. For that purpose, this paper sketches out various classical active learning methodologies before studying their empirical impact on both synthetic and real datasets. Another key challenge in insurance is the fairness issue in model inferences. We will introduce and integrate a post-processing fairness for multi-class tasks in this active learning framework to solve these two issues. Finally numerical experiments on unfair datasets highlight that the proposed setup presents a good compromise between model precision and fairness.


Artificial Intelligence Ethics and Safety: practical tools for creating "good" models

arXiv.org Artificial Intelligence

The AI Robotics Ethics Society (AIRES) is a non-profit organization founded in 2018 by Aaron Hui to promote awareness and the importance of ethical implementation and regulation of AI. AIRES is now an organization with chapters at universities such as UCLA (Los Angeles), USC (University of Southern California), Caltech (California Institute of Technology), Stanford University, Cornell University, Brown University, and the Pontifical Catholic University of Rio Grande do Sul (Brazil). AIRES at PUCRS is the first international chapter of AIRES, and as such, we are committed to promoting and enhancing the AIRES Mission. Our mission is to focus on educating the AI leaders of tomorrow in ethical principles to ensure that AI is created ethically and responsibly. As there are still few proposals for how we should implement ethical principles and normative guidelines in the practice of AI system development, the goal of this work is to try to bridge this gap between discourse and praxis. Between abstract principles and technical implementation. In this work, we seek to introduce the reader to the topic of AI Ethics and Safety. At the same time, we present several tools to help developers of intelligent systems develop "good" models. This work is a developing guide published in English and Portuguese. Contributions and suggestions are welcome.


WOOD: Wasserstein-based Out-of-Distribution Detection

arXiv.org Machine Learning

The training and test data for deep-neural-network-based classifiers are usually assumed to be sampled from the same distribution. When part of the test samples are drawn from a distribution that is sufficiently far away from that of the training samples (a.k.a. out-of-distribution (OOD) samples), the trained neural network has a tendency to make high confidence predictions for these OOD samples. Detection of the OOD samples is critical when training a neural network used for image classification, object detection, etc. It can enhance the classifier's robustness to irrelevant inputs, and improve the system resilience and security under different forms of attacks. Detection of OOD samples has three main challenges: (i) the proposed OOD detection method should be compatible with various architectures of classifiers (e.g., DenseNet, ResNet), without significantly increasing the model complexity and requirements on computational resources; (ii) the OOD samples may come from multiple distributions, whose class labels are commonly unavailable; (iii) a score function needs to be defined to effectively separate OOD samples from in-distribution (InD) samples. To overcome these challenges, we propose a Wasserstein-based out-of-distribution detection (WOOD) method. The basic idea is to define a Wasserstein-distance-based score that evaluates the dissimilarity between a test sample and the distribution of InD samples. An optimization problem is then formulated and solved based on the proposed score function. The statistical learning bound of the proposed method is investigated to guarantee that the loss value achieved by the empirical optimizer approximates the global optimum. The comparison study results demonstrate that the proposed WOOD consistently outperforms other existing OOD detection methods.