Goto

Collaborating Authors

Neural Networks


Advanced Reinforcement Learning: policy gradient methods

#artificialintelligence

Sample efficiency for policy gradient methods is pretty poor. We throw out each batch of data immediately after just one gradient step. This is the most complete Reinforcement Learning course series on Udemy. In it, you will learn to implement some of the most powerful Deep Reinforcement Learning algorithms in Python using PyTorch and PyTorch lightning. You will implement from scratch adaptive algorithms that solve control tasks based on experience.


Deep Learning with PyTorch

#artificialintelligence

Deep Learning with PyTorch teaches you to create neural networks and deep learning systems with PyTorch. This program is specially designed for people who want to start using PyTorch for building AI, Machine Learning, or Deep Learning models and applications. This program will help you learn how PyTorch can be used for developing deep learning models. You'll learn the PyTorch concepts like Tensors, Autograd, and Automatic differentiation packages. Also, this program will give you a brief about deep learning concepts.


Traditional vs Deep Learning Algorithms in the Telecom Industry -- Cloud Architecture and Algorithm Categorization

#artificialintelligence

The unprecedented growth of mobile devices, applications and services have placed the utmost demand on mobile and wireless networking infrastructure. Rapid research and development of 5G systems have found ways to support mobile traffic volumes, real-time extraction of fine-grained analytics, and agile management of network resources, so as to maximize user experience. Moreover inference from heterogeneous mobile data from distributed devices experiences challenges due to computational and battery power limitations. ML models employed at the edge-servers are constrained to light-weight to boost model performance by achieving a trade-off between model complexity and accuracy. Also, model compression, pruning, and quantization are largely in place.


Natural Language Processing in TensorFlow

#artificialintelligence

If you are a software developer who wants to build scalable AI-powered algorithms, you need to understand how to use the tools to build them. This Specialization will teach you best practices for using TensorFlow, a popular open-source framework for machine learning. In Course 3 of the deeplearning.ai TensorFlow Specialization, you will build natural language processing systems using TensorFlow. You will learn to process text, including tokenizing and representing sentences as vectors, so that they can be input to a neural network.


SoundWatch

Communications of the ACM

We present SoundWatch, a smartwatch-based deep learning application to sense, classify, and provide feedback about sounds occurring in the environment.


A Deeper Understanding of Deep Learning

Communications of the ACM

Deep learning should not work as well as it seems to: according to traditional statistics and machine learning, any analysis that has too many adjustable parameters will overfit noisy training data, and then fail when faced with novel test data. In clear violation of this principle, modern neural networks often use vastly more parameters than data points, but they nonetheless generalize to new data quite well. The shaky theoretical basis for generalization has been noted for many years. One proposal was that neural networks implicitly perform some sort of regularization--a statistical tool that penalizes the use of extra parameters. Yet efforts to formally characterize such an "implicit bias" toward smoother solutions have failed, said Roi Livni, an advanced lecturer in the department of electrical engineering of Israel's Tel Aviv University.


100+ Data Science And Machine Learning Cheat Sheets (With PDF)

#artificialintelligence

Today, We'll look after something very big that you might have never seen or rarely seen on the web. We have researched for more than 35 days to find out all the cheatsheets on machine learning, deep learning, data mining, neural networks, big data, artificial intelligence, python, tensorflow, scikit-learn, etc from all over the web. To make it easy for all learners, We have zipped over 100 machine learning cheat sheet, data science cheat sheet, artificial intelligence cheat sheets and more in one article. You can also download the pdf version of this cheat sheets (links are already provided below every image). Note: The list is long.


Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma - PubMed

#artificialintelligence

Hepatocellular carcinoma (HCC) currently represents the fifth most common malignancy and the third-leading cause of cancer-related death worldwide, with incidence and mortality rates that are increasing. Recently, artificial intelligence (AI) has emerged as a unique opportunity to improve the full spectrum of HCC clinical care, by improving HCC risk prediction, diagnosis, and prognostication. AI approaches include computational search algorithms, machine learning (ML) and deep learning (DL) models. ML consists of a computer running repeated iterations of models, in order to progressively improve performance of a specific task, such as classifying an outcome. DL models are a subtype of ML, based on neural network structures that are inspired by the neuroanatomy of the human brain.


Understanding Bias in the Simplest Plausible Way

#artificialintelligence

I have recently started exploring Neural networks, and I came across the term activation function and biases. Activation function kinda made some sense to me, but I found it difficult to get the exact essence of biases in Neural Network. Bias in Neural Networks can be thought of as analogous to the role of an intercept in linear regression. But what the heck does this mean? I very well understand that intercept is the point where the line crosses the y-axis.


AI Hardware Technology Imitates Changes in Neural Network Topology

#artificialintelligence

A group of researchers at The Korea Advanced Institute of Science and Technology (KAIST) has proposed a new system inspired by the neuromodulation of the brain, which is called a "stashing system." This newly proposed system requires less energy consumption.