Goto

Collaborating Authors

 Neural Networks: Overviews


Anthropic finds alarming 'emerging trends' in Claude misuse report

ZDNet

On Wednesday, Anthropic released a report detailing how Claude was misused during March. It revealed some surprising and novel trends in how threat actors and chatbot abuse are evolving and the increasing risks that generative AI poses, even with proper safety testing. In one case, Anthropic found that a "sophisticated actor" had used Claude to help scrape leaked credentials "associated with security cameras" to access the devices, the company noted in the announcement. In another case, an individual with "limited technical skills" could develop malware that normally required more expertise. Claude helped this individual take an open-source kit from doing just the basics to more advanced software functions, like facial recognition and the ability to scan the dark web.


A Survey on Archetypal Analysis

arXiv.org Machine Learning

Archetypal analysis (AA) was originally proposed in 1994 by Adele Cutler and Leo Breiman as a computational procedure to extract the distinct aspects called archetypes in observations with each observational record approximated as a mixture (i.e., convex combination) of these archetypes. AA thereby provides straightforward, interpretable, and explainable representations for feature extraction and dimensionality reduction, facilitating the understanding of the structure of high-dimensional data with wide applications throughout the sciences. However, AA also faces challenges, particularly as the associated optimization problem is non-convex. This survey provides researchers and data mining practitioners an overview of methodologies and opportunities that AA has to offer surveying the many applications of AA across disparate fields of science, as well as best practices for modeling data using AA and limitations. The survey concludes by explaining important future research directions concerning AA.


Challenges in interpretability of additive models

arXiv.org Machine Learning

We review generalized additive models as a type of ``transparent'' model that has recently seen renewed interest in the deep learning community as neural additive models. We highlight multiple types of nonidentifiability in this model class and discuss challenges in interpretability, arguing for restraint when claiming ``interpretability'' or ``suitability for safety-critical applications'' of such models.


Topological Schr\"odinger Bridge Matching

arXiv.org Machine Learning

Given two boundary distributions, the Schr\"odinger Bridge (SB) problem seeks the ``most likely`` random evolution between them with respect to a reference process. It has revealed rich connections to recent machine learning methods for generative modeling and distribution matching. While these methods perform well in Euclidean domains, they are not directly applicable to topological domains such as graphs and simplicial complexes, which are crucial for data defined over network entities, such as node signals and edge flows. In this work, we propose the Topological Schr\"odinger Bridge problem (TSBP) for matching signal distributions on a topological domain. We set the reference process to follow some linear tractable topology-aware stochastic dynamics such as topological heat diffusion. For the case of Gaussian boundary distributions, we derive a closed-form topological SB (TSB) in terms of its time-marginal and stochastic differential. In the general case, leveraging the well-known result, we show that the optimal process follows the forward-backward topological dynamics governed by some unknowns. Building on these results, we develop TSB-based models for matching topological signals by parameterizing the unknowns in the optimal process as (topological) neural networks and learning them through likelihood training. We validate the theoretical results and demonstrate the practical applications of TSB-based models on both synthetic and real-world networks, emphasizing the role of topology. Additionally, we discuss the connections of TSB-based models to other emerging models, and outline future directions for topological signal matching.


Model Context Protocol (MCP): Landscape, Security Threats, and Future Research Directions

arXiv.org Artificial Intelligence

The Model Context Protocol (MCP) is a standardized interface designed to enable seamless interaction between AI models and external tools and resources, breaking down data silos and facilitating interoperability across diverse systems. This paper provides a comprehensive overview of MCP, focusing on its core components, workflow, and the lifecycle of MCP servers, which consists of three key phases: creation, operation, and update. We analyze the security and privacy risks associated with each phase and propose strategies to mitigate potential threats. The paper also examines the current MCP landscape, including its adoption by industry leaders and various use cases, as well as the tools and platforms supporting its integration. We explore future directions for MCP, highlighting the challenges and opportunities that will influence its adoption and evolution within the broader AI ecosystem. Finally, we offer recommendations for MCP stakeholders to ensure its secure and sustainable development as the AI landscape continues to evolve.


Opening the Black-Box: Symbolic Regression with Kolmogorov-Arnold Networks for Energy Applications

arXiv.org Machine Learning

While most modern machine learning methods offer speed and accuracy, few promise interpretability or explainability -- two key features necessary for highly sensitive industries, like medicine, finance, and engineering. Using eight datasets representative of one especially sensitive industry, nuclear power, this work compares a traditional feedforward neural network (FNN) to a Kolmogorov-Arnold Network (KAN). We consider not only model performance and accuracy, but also interpretability through model architecture and explainability through a post-hoc SHAP analysis. In terms of accuracy, we find KANs and FNNs comparable across all datasets, when output dimensionality is limited. KANs, which transform into symbolic equations after training, yield perfectly interpretable models while FNNs remain black-boxes. Finally, using the post-hoc explainability results from Kernel SHAP, we find that KANs learn real, physical relations from experimental data, while FNNs simply produce statistically accurate results. Overall, this analysis finds KANs a promising alternative to traditional machine learning methods, particularly in applications requiring both accuracy and comprehensibility.


Operator Learning: A Statistical Perspective

arXiv.org Machine Learning

Operator learning has emerged as a powerful tool in scientific computing for approximating mappings between infinite-dimensional function spaces. A primary application of operator learning is the development of surrogate models for the solution operators of partial differential equations (PDEs). These methods can also be used to develop black-box simulators to model system behavior from experimental data, even without a known mathematical model. In this article, we begin by formalizing operator learning as a function-to-function regression problem and review some recent developments in the field. We also discuss PDE-specific operator learning, outlining strategies for incorporating physical and mathematical constraints into architecture design and training processes. Finally, we end by highlighting key future directions such as active data collection and the development of rigorous uncertainty quantification frameworks.


Agentic Large Language Models, a survey

arXiv.org Artificial Intelligence

There is great interest in agentic LLMs, large language models that act as agents. We review the growing body of work in this area and provide a research agenda. Agentic LLMs are LLMs that (1) reason, (2) act, and (3) interact. We organize the literature according to these three categories. The research in the first category focuses on reasoning, reflection, and retrieval, aiming to improve decision making; the second category focuses on action models, robots, and tools, aiming for agents that act as useful assistants; the third category focuses on multi-agent systems, aiming for collaborative task solving and simulating interaction to study emergent social behavior. We find that works mutually benefit from results in other categories: retrieval enables tool use, reflection improves multi-agent collaboration, and reasoning benefits all categories. We discuss applications of agentic LLMs and provide an agenda for further research. Important applications are in medical diagnosis, logistics and financial market analysis. Meanwhile, self-reflective agents playing roles and interacting with one another augment the process of scientific research itself. Further, agentic LLMs may provide a solution for the problem of LLMs running out of training data: inference-time behavior generates new training states, such that LLMs can keep learning without needing ever larger datasets. We note that there is risk associated with LLM assistants taking action in the real world, while agentic LLMs are also likely to benefit society.


STOOD-X methodology: using statistical nonparametric test for OOD Detection Large-Scale datasets enhanced with explainability

arXiv.org Machine Learning

Out-of-Distribution (OOD) detection is a critical task in machine learning, particularly in safety-sensitive applications where model failures can have serious consequences. However, current OOD detection methods often suffer from restrictive distributional assumptions, limited scalability, and a lack of interpretability. To address these challenges, we propose STOOD-X, a two-stage methodology that combines a Statistical nonparametric Test for OOD Detection with eXplainability enhancements. In the first stage, STOOD-X uses feature-space distances and a Wilcoxon-Mann-Whitney test to identify OOD samples without assuming a specific feature distribution. In the second stage, it generates user-friendly, concept-based visual explanations that reveal the features driving each decision, aligning with the BLUE XAI paradigm. Through extensive experiments on benchmark datasets and multiple architectures, STOOD-X achieves competitive performance against state-of-the-art post hoc OOD detectors, particularly in high-dimensional and complex settings. In addition, its explainability framework enables human oversight, bias detection, and model debugging, fostering trust and collaboration between humans and AI systems. The STOOD-X methodology therefore offers a robust, explainable, and scalable solution for real-world OOD detection tasks.


Towards Mobile Sensing with Event Cameras on High-agility Resource-constrained Devices: A Survey

arXiv.org Artificial Intelligence

With the increasing complexity of mobile device applications, these devices are evolving toward high agility. This shift imposes new demands on mobile sensing, particularly in terms of achieving high accuracy and low latency. Event-based vision has emerged as a disruptive paradigm, offering high temporal resolution, low latency, and energy efficiency, making it well-suited for high-accuracy and low-latency sensing tasks on high-agility platforms. However, the presence of substantial noisy events, the lack of inherent semantic information, and the large data volume pose significant challenges for event-based data processing on resource-constrained mobile devices. This paper surveys the literature over the period 2014-2024, provides a comprehensive overview of event-based mobile sensing systems, covering fundamental principles, event abstraction methods, algorithmic advancements, hardware and software acceleration strategies. We also discuss key applications of event cameras in mobile sensing, including visual odometry, object tracking, optical flow estimation, and 3D reconstruction, while highlighting the challenges associated with event data processing, sensor fusion, and real-time deployment. Furthermore, we outline future research directions, such as improving event camera hardware with advanced optics, leveraging neuromorphic computing for efficient processing, and integrating bio-inspired algorithms to enhance perception. To support ongoing research, we provide an open-source \textit{Online Sheet} with curated resources and recent developments. We hope this survey serves as a valuable reference, facilitating the adoption of event-based vision across diverse applications.