Well File:

Results


A Survey of Behavior Trees in Robotics and AI

arXiv.org Artificial Intelligence

Behavior Trees (BTs) were invented as a tool to enable modular AI in computer games, but have received an increasing amount of attention in the robotics community in the last decade. With rising demands on agent AI complexity, game programmers found that the Finite State Machines (FSM) that they used scaled poorly and were difficult to extend, adapt and reuse. In BTs, the state transition logic is not dispersed across the individual states, but organized in a hierarchical tree structure, with the states as leaves. This has a significant effect on modularity, which in turn simplifies both synthesis and analysis by humans and algorithms alike. These advantages are needed not only in game AI design, but also in robotics, as is evident from the research being done. In this paper we present a comprehensive survey of the topic of BTs in Artificial Intelligence and Robotic applications. The existing literature is described and categorized based on methods, application areas and contributions, and the paper is concluded with a list of open research challenges.


Task-assisted Motion Planning in Partially Observable Domains

arXiv.org Artificial Intelligence

Antony Thomas and Sunny Amatya † and Fulvio Mastrogiovanni and Marco Baglietto Abstract -- We present an integrated T ask-Motion Planning framework for robot navigation in belief space. Autonomous robots operating in real world complex scenarios require planning in the discrete (task) space and the continuous (motion) space. T o this end, we propose a framework for integrating belief space reasoning within a hybrid task planner . The expressive power of PDDL combined with heuristic-driven semantic attachments performs the propagated and posterior belief estimates while planning. The underlying methodology for the development of the combined hybrid planner is discussed, providing suggestions for improvements and future work. I NTRODUCTION Autonomous robots operating in complex real world scenarios require different levels of planning to execute their tasks. High-level (task) planning helps break down a given set of tasks into a sequence of sub-tasks, actual execution of each of these sub-tasks would require low-level control actions to generate appropriate robot motions. In fact, the dependency between logical and geometrical aspects is pervasive in both task planning and execution. Hence, planning should be performed in the task-motion or the discrete-continuous space. In recent years, combining high-level task planning with low-level motion planning has been a subject of great interest among the Robotics and Artificial Intelligence (AI) community.