Plotting

Results


Deep Learning: Recurrent Neural Networks in Python

#artificialintelligence

The Recurrent Neural Network (RNN) has been used to obtain state-of-the-art results in sequence modeling. This includes time series analysis, forecasting and natural language processing (NLP). Learn about why RNNs beat old-school machine learning algorithms like Hidden Markov Models. All of the materials required for this course can be downloaded and installed for FREE. We will do most of our work in Numpy, Matplotlib, and Tensorflow.


11 Best Natural Language Processing Online Courses

#artificialintelligence

In this course, you will learn NLP (natural language processing) with deep learning. This course will teach you word2vec and how to implement word2vec. You will also learn how to implement GloVe using gradient descent and alternating least squares. This course uses recurrent neural networks for named entity recognition. Along with that, you will learn how to implement recursive neural tensor networks for sentiment analysis. Let's see the topics covered in this course-


Deep Learning: Recurrent Neural Networks in Python

#artificialintelligence

The Recurrent Neural Network (RNN) has been used to obtain state-of-the-art results in sequence modeling. This includes time series analysis, forecasting and natural language processing (NLP). Learn about why RNNs beat old-school machine learning algorithms like Hidden Markov Models. All of the materials required for this course can be downloaded and installed for FREE. We will do most of our work in Numpy, Matplotlib, and Tensorflow.


Best Machine Learning books & Best Machine Learning courses 2022 - ReactDOM

#artificialintelligence

Machine Learning A-Z: Hands-On Python & R In Data Science by Kirill Eremenko, Hadelin de Ponteves and SuperDataScience Team will teach you Machine Learning using Python & R. This course has been designed by two professional Data Scientists. With over 300,000 students and an average rating of 4.5 on Udemy, this is quite simply one of the best Machine Learning & Python courses. If that wasn't enough, this course has a length of over 40 hours of video content! This makes it one of the most comprehensive Machine Learning courses ever. This Python tutorial will teach you everything related to Machine Learning, step-by-step.


Top resources to learn reinforcement learning in 2022

#artificialintelligence

Rich S. Sutton, a research scientist at DeepMind and computing science professor at the University of Alberta, explains the underlying formal problem like the Markov decision processes, core solution methods, dynamic programming, Monte Carlo methods, and temporal-difference learning in this in-depth tutorial.


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.


Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Deep reinforcement learning has gathered much attention recently. Impressive results were achieved in activities as diverse as autonomous driving, game playing, molecular recombination, and robotics. In all these fields, computer programs have taught themselves to solve difficult problems. They have learned to fly model helicopters and perform aerobatic manoeuvers such as loops and rolls. In some applications they have even become better than the best humans, such as in Atari, Go, poker and StarCraft. The way in which deep reinforcement learning explores complex environments reminds us of how children learn, by playfully trying out things, getting feedback, and trying again. The computer seems to truly possess aspects of human learning; this goes to the heart of the dream of artificial intelligence. The successes in research have not gone unnoticed by educators, and universities have started to offer courses on the subject. The aim of this book is to provide a comprehensive overview of the field of deep reinforcement learning. The book is written for graduate students of artificial intelligence, and for researchers and practitioners who wish to better understand deep reinforcement learning methods and their challenges. We assume an undergraduate-level of understanding of computer science and artificial intelligence; the programming language of this book is Python. We describe the foundations, the algorithms and the applications of deep reinforcement learning. We cover the established model-free and model-based methods that form the basis of the field. Developments go quickly, and we also cover advanced topics: deep multi-agent reinforcement learning, deep hierarchical reinforcement learning, and deep meta learning.


Masked Deep Q-Recommender for Effective Question Scheduling

arXiv.org Artificial Intelligence

Providing appropriate questions according to a student's knowledge level is imperative in personalized learning. However, It requires a lot of manual effort for teachers to understand students' knowledge status and provide optimal questions accordingly. To address this problem, we introduce a question scheduling model that can effectively boost student knowledge level using Reinforcement Learning (RL). Our proposed method first evaluates students' concept-level knowledge using knowledge tracing (KT) model. Given predicted student knowledge, RL-based recommender predicts the benefits of each question. With curriculum range restriction and duplicate penalty, the recommender selects questions sequentially until it reaches the predefined number of questions. In an experimental setting using a student simulator, which gives 20 questions per day for two weeks, questions recommended by the proposed method increased average student knowledge level by 21.3%, superior to an expert-designed schedule baseline with a 10% increase in student knowledge levels.


Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021

arXiv.org Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.


The Complete Neural Networks Bootcamp: Theory, Applications

#artificialintelligence

Including NLP and Transformers Students also bought Recommender Systems and Deep Learning in Python Machine Learning A-Z: Become Kaggle Master Unsupervised Deep Learning in Python Deep Learning: Recurrent Neural Networks in Python Unsupervised Machine Learning Hidden Markov Models in Python Deep Learning: Convolutional Neural Networks in Python Preview this Udemy Course GET COUPON CODE Description This course is a comprehensive guide to Deep Learning and Neural Networks. The theories are explained in depth and in a friendly manner. After that, we'll have the hands-on session, where we will be learning how to code Neural Networks in PyTorch, a very advanced and powerful deep learning framework! We will walk through an example and do the calculations step-by-step. We will also discuss the activation functions used in Neural Networks, with their advantages and disadvantages!