Machine Learning (ML) is the branch of Artificial Intelligence in which we use algorithms to learn from data provided to make predictions on unseen data. Recently, the demand for Machine Learning engineers has rapidly grown across healthcare, Finance, e-commerce, etc. According to Glassdoor, the median ML Engineer Salary is $131,290 per annum. In 2021, the global ML market was valued at $15.44 billion. It is expected to grow at a significant compound annual growth rate (CAGR) above 38% until 2029.
Khetarpal, Khimya | Riemer, Matthew (a:1:{s:5:"en_US";s:42:"IBM Research, Mila, University of Montreal";}) | Rish, Irina | Precup, Doina
In this article, we aim to provide a literature review of different formulations and approaches to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We begin by discussing our perspective on why RL is a natural fit for studying continual learning. We then provide a taxonomy of different continual RL formulations by mathematically characterizing two key properties of non-stationarity, namely, the scope and driver non-stationarity. This offers a unified view of various formulations. Next, we review and present a taxonomy of continual RL approaches. We go on to discuss evaluation of continual RL agents, providing an overview of benchmarks used in the literature and important metrics for understanding agent performance. Finally, we highlight open problems and challenges in bridging the gap between the current state of continual RL and findings in neuroscience. While still in its early days, the study of continual RL has the promise to develop better incremental reinforcement learners that can function in increasingly realistic applications where non-stationarity plays a vital role. These include applications such as those in the fields of healthcare, education, logistics, and robotics.
As humans, we perceive the three-dimensional structure of the world around us with apparent ease. Think of how vivid the three-dimensional percept is when you look at a vase of flowers sitting on the table next to you. You can tell the shape and translucency of each petal through the subtle patterns of light and shading that play across its surface and effortlessly segment each flower from the background of the scene (Figure 1.1). Looking at a framed group por- trait, you can easily count (and name) all of the people in the picture and even guess at their emotions from their facial appearance. Perceptual psychologists have spent decades trying to understand how the visual system works and, even though they can devise optical illusions1 to tease apart some of its principles (Figure 1.3), a complete solution to this puzzle remains elusive (Marr 1982; Palmer 1999; Livingstone 2008).
Tronarp, Filip, Bosch, Nathanael, Hennig, Philipp
We show how probabilistic numerics can be used to convert an initial value problem into a Gauss--Markov process parametrised by the dynamics of the initial value problem. Consequently, the often difficult problem of parameter estimation in ordinary differential equations is reduced to hyperparameter estimation in Gauss--Markov regression, which tends to be considerably easier. The method's relation and benefits in comparison to classical numerical integration and gradient matching approaches is elucidated. In particular, the method can, in contrast to gradient matching, handle partial observations, and has certain routes for escaping local optima not available to classical numerical integration. Experimental results demonstrate that the method is on par or moderately better than competing approaches.
Structural matrix-variate observations routinely arise in diverse fields such as multi-layer network analysis and brain image clustering. While data of this type have been extensively investigated with fruitful outcomes being delivered, the fundamental questions like its statistical optimality and computational limit are largely under-explored. In this paper, we propose a low-rank Gaussian mixture model (LrMM) assuming each matrix-valued observation has a planted low-rank structure. Minimax lower bounds for estimating the underlying low-rank matrix are established allowing a whole range of sample sizes and signal strength. Under a minimal condition on signal strength, referred to as the information-theoretical limit or statistical limit, we prove the minimax optimality of a maximum likelihood estimator which, in general, is computationally infeasible. If the signal is stronger than a certain threshold, called the computational limit, we design a computationally fast estimator based on spectral aggregation and demonstrate its minimax optimality. Moreover, when the signal strength is smaller than the computational limit, we provide evidences based on the low-degree likelihood ratio framework to claim that no polynomial-time algorithm can consistently recover the underlying low-rank matrix. Our results reveal multiple phase transitions in the minimax error rates and the statistical-to-computational gap. Numerical experiments confirm our theoretical findings. We further showcase the merit of our spectral aggregation method on the worldwide food trading dataset.
Hughes, Aidan J., Bull, Lawrence A., Gardner, Paul, Dervilis, Nikolaos, Worden, Keith
Classification models are a fundamental component of physical-asset management technologies such as structural health monitoring (SHM) systems and digital twins. Previous work introduced \textit{risk-based active learning}, an online approach for the development of statistical classifiers that takes into account the decision-support context in which they are applied. Decision-making is considered by preferentially querying data labels according to \textit{expected value of perfect information} (EVPI). Although several benefits are gained by adopting a risk-based active learning approach, including improved decision-making performance, the algorithms suffer from issues relating to sampling bias as a result of the guided querying process. This sampling bias ultimately manifests as a decline in decision-making performance during the later stages of active learning, which in turn corresponds to lost resource/utility. The current paper proposes two novel approaches to counteract the effects of sampling bias: \textit{semi-supervised learning}, and \textit{discriminative classification models}. These approaches are first visualised using a synthetic dataset, then subsequently applied to an experimental case study, specifically, the Z24 Bridge dataset. The semi-supervised learning approach is shown to have variable performance; with robustness to sampling bias dependent on the suitability of the generative distributions selected for the model with respect to each dataset. In contrast, the discriminative classifiers are shown to have excellent robustness to the effects of sampling bias. Moreover, it was found that the number of inspections made during a monitoring campaign, and therefore resource expenditure, could be reduced with the careful selection of the statistical classifiers used within a decision-supporting monitoring system.
Petropoulos, Fotios, Apiletti, Daniele, Assimakopoulos, Vassilios, Babai, Mohamed Zied, Barrow, Devon K., Taieb, Souhaib Ben, Bergmeir, Christoph, Bessa, Ricardo J., Bijak, Jakub, Boylan, John E., Browell, Jethro, Carnevale, Claudio, Castle, Jennifer L., Cirillo, Pasquale, Clements, Michael P., Cordeiro, Clara, Oliveira, Fernando Luiz Cyrino, De Baets, Shari, Dokumentov, Alexander, Ellison, Joanne, Fiszeder, Piotr, Franses, Philip Hans, Frazier, David T., Gilliland, Michael, Gönül, M. Sinan, Goodwin, Paul, Grossi, Luigi, Grushka-Cockayne, Yael, Guidolin, Mariangela, Guidolin, Massimo, Gunter, Ulrich, Guo, Xiaojia, Guseo, Renato, Harvey, Nigel, Hendry, David F., Hollyman, Ross, Januschowski, Tim, Jeon, Jooyoung, Jose, Victor Richmond R., Kang, Yanfei, Koehler, Anne B., Kolassa, Stephan, Kourentzes, Nikolaos, Leva, Sonia, Li, Feng, Litsiou, Konstantia, Makridakis, Spyros, Martin, Gael M., Martinez, Andrew B., Meeran, Sheik, Modis, Theodore, Nikolopoulos, Konstantinos, Önkal, Dilek, Paccagnini, Alessia, Panagiotelis, Anastasios, Panapakidis, Ioannis, Pavía, Jose M., Pedio, Manuela, Pedregal, Diego J., Pinson, Pierre, Ramos, Patrícia, Rapach, David E., Reade, J. James, Rostami-Tabar, Bahman, Rubaszek, Michał, Sermpinis, Georgios, Shang, Han Lin, Spiliotis, Evangelos, Syntetos, Aris A., Talagala, Priyanga Dilini, Talagala, Thiyanga S., Tashman, Len, Thomakos, Dimitrios, Thorarinsdottir, Thordis, Todini, Ezio, Arenas, Juan Ramón Trapero, Wang, Xiaoqian, Winkler, Robert L., Yusupova, Alisa, Ziel, Florian
Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.
Deep reinforcement learning has gathered much attention recently. Impressive results were achieved in activities as diverse as autonomous driving, game playing, molecular recombination, and robotics. In all these fields, computer programs have taught themselves to solve difficult problems. They have learned to fly model helicopters and perform aerobatic manoeuvers such as loops and rolls. In some applications they have even become better than the best humans, such as in Atari, Go, poker and StarCraft. The way in which deep reinforcement learning explores complex environments reminds us of how children learn, by playfully trying out things, getting feedback, and trying again. The computer seems to truly possess aspects of human learning; this goes to the heart of the dream of artificial intelligence. The successes in research have not gone unnoticed by educators, and universities have started to offer courses on the subject. The aim of this book is to provide a comprehensive overview of the field of deep reinforcement learning. The book is written for graduate students of artificial intelligence, and for researchers and practitioners who wish to better understand deep reinforcement learning methods and their challenges. We assume an undergraduate-level of understanding of computer science and artificial intelligence; the programming language of this book is Python. We describe the foundations, the algorithms and the applications of deep reinforcement learning. We cover the established model-free and model-based methods that form the basis of the field. Developments go quickly, and we also cover advanced topics: deep multi-agent reinforcement learning, deep hierarchical reinforcement learning, and deep meta learning.
Champion, Théophile, Bowman, Howard, Grześ, Marek
Active inference is a state-of-the-art framework for modelling the brain that explains a wide range of mechanisms such as habit formation, dopaminergic discharge and curiosity. However, recent implementations suffer from an exponential (space and time) complexity class when computing the prior over all the possible policies up to the time horizon. Fountas et al. (2020) used Monte Carlo tree search to address this problem, leading to very good results in two different tasks. Additionally, Champion et al. (2021a) proposed a tree search approach based on structure learning. This was enabled by the development of a variational message passing approach to active inference (Champion et al., 2021b), which enables compositional construction of Bayesian networks for active inference. However, this message passing tree search approach, which we call branching-time active inference (BTAI), has never been tested empirically. In this paper, we present an experimental study of the approach (Champion et al., 2021a) in the context of a maze solving agent. In this context, we show that both improved prior preferences and deeper search help mitigate the vulnerability to local minima. Then, we compare BTAI to standard active inference (AI) on a graph navigation task. We show that for small graphs, both BTAI and AI successfully solve the task. For larger graphs, AI exhibits an exponential (space) complexity class, making the approach intractable. However, BTAI explores the space of policies more efficiently, successfully scaling to larger graphs.
Sharma, Sugandha, Curtis, Aidan, Kryven, Marta, Tenenbaum, Josh, Fiete, Ila
Humans are expert explorers. Understanding the computational cognitive mechanisms that support this efficiency can advance the study of the human mind and enable more efficient exploration algorithms. We hypothesize that humans explore new environments efficiently by inferring the structure of unobserved spaces using spatial information collected from previously explored spaces. This cognitive process can be modeled computationally using program induction in a Hierarchical Bayesian framework that explicitly reasons about uncertainty with strong spatial priors. Using a new behavioral Map Induction Task, we demonstrate that this computational framework explains human exploration behavior better than non-inductive models and outperforms state-of-the-art planning algorithms when applied to a realistic spatial navigation domain.