Goto

Collaborating Authors

Results


Conversational Agents: Theory and Applications

arXiv.org Artificial Intelligence

In this chapter, we provide a review of conversational agents (CAs), discussing chatbots, intended for casual conversation with a user, as well as task-oriented agents that generally engage in discussions intended to reach one or several specific goals, often (but not always) within a specific domain. We also consider the concept of embodied conversational agents, briefly reviewing aspects such as character animation and speech processing. The many different approaches for representing dialogue in CAs are discussed in some detail, along with methods for evaluating such agents, emphasizing the important topics of accountability and interpretability. A brief historical overview is given, followed by an extensive overview of various applications, especially in the fields of health and education. We end the chapter by discussing benefits and potential risks regarding the societal impact of current and future CA technology.


Speech Recognition Transformation

#artificialintelligence

Voice technology has reached maturity. The quality of speech recognition surpassed 95 percent accuracy in 2020. That is the same quality as normal communication between human beings. And the influence is now being felt. The modern Microsoft Windows update vigorously pushes its voice feature -- a mechanism that allows the user to dictate messages at the speed of normal speech, which is four times faster than typing. There are more than 2,600 voice apps (called "skills") available for download on Apple & Google app stores.


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.


Speech Recognition Transformation

#artificialintelligence

Voice technology has reached maturity. The quality of speech recognition surpassed 95 percent accuracy in 2020. That is the same quality as normal communication between human beings. And the influence is now being felt. The modern Microsoft Windows update vigorously pushes its voice feature -- a mechanism that allows the user to dictate messages at the speed of normal speech, which is four times faster than typing.


Automatic Speech Recognition using limited vocabulary: A survey

arXiv.org Artificial Intelligence

Automatic Speech Recognition (ASR) is an active field of research due to its huge number of applications and the proliferation of interfaces or computing devices that can support speech processing. But the bulk of applications is based on well-resourced languages that overshadow under-resourced ones. Yet ASR represents an undeniable mean to promote such languages, especially when design human-to-human or human-to-machine systems involving illiterate people. An approach to design an ASR system targeting under-resourced languages is to start with a limited vocabulary. ASR using a limited vocabulary is a subset of the speech recognition problem that focuses on the recognition of a small number of words or sentences. This paper aims to provide a comprehensive view of mechanisms behind ASR systems as well as techniques, tools, projects, recent contributions, and possibly future directions in ASR using a limited vocabulary. This work consequently provides a way to go when designing ASR system using limited vocabulary. Although an emphasis is put on limited vocabulary, most of the tools and techniques reported in this survey applied to ASR systems in general.


Attention, please! A survey of Neural Attention Models in Deep Learning

arXiv.org Artificial Intelligence

In humans, Attention is a core property of all perceptual and cognitive operations. Given our limited ability to process competing sources, attention mechanisms select, modulate, and focus on the information most relevant to behavior. For decades, concepts and functions of attention have been studied in philosophy, psychology, neuroscience, and computing. For the last six years, this property has been widely explored in deep neural networks. Currently, the state-of-the-art in Deep Learning is represented by neural attention models in several application domains. This survey provides a comprehensive overview and analysis of developments in neural attention models. We systematically reviewed hundreds of architectures in the area, identifying and discussing those in which attention has shown a significant impact. We also developed and made public an automated methodology to facilitate the development of reviews in the area. By critically analyzing 650 works, we describe the primary uses of attention in convolutional, recurrent networks and generative models, identifying common subgroups of uses and applications. Furthermore, we describe the impact of attention in different application domains and their impact on neural networks' interpretability. Finally, we list possible trends and opportunities for further research, hoping that this review will provide a succinct overview of the main attentional models in the area and guide researchers in developing future approaches that will drive further improvements.


Jira: a Kurdish Speech Recognition System Designing and Building Speech Corpus and Pronunciation Lexicon

arXiv.org Artificial Intelligence

In this paper, we introduce the first large vocabulary speech recognition system (LVSR) for the Central Kurdish language, named Jira. The Kurdish language is an Indo-European language spoken by more than 30 million people in several countries, but due to the lack of speech and text resources, there is no speech recognition system for this language. To fill this gap, we introduce the first speech corpus and pronunciation lexicon for the Kurdish language. Regarding speech corpus, we designed a sentence collection in which the ratio of di-phones in the collection resembles the real data of the Central Kurdish language. The designed sentences are uttered by 576 speakers in a controlled environment with noise-free microphones (called AsoSoft Speech-Office) and in Telegram social network environment using mobile phones (denoted as AsoSoft Speech-Crowdsourcing), resulted in 43.68 hours of speech. Besides, a test set including 11 different document topics is designed and recorded in two corresponding speech conditions (i.e., Office and Crowdsourcing). Furthermore, a 60K pronunciation lexicon is prepared in this research in which we faced several challenges and proposed solutions for them. The Kurdish language has several dialects and sub-dialects that results in many lexical variations. Our methods for script standardization of lexical variations and automatic pronunciation of the lexicon tokens are presented in detail. To setup the recognition engine, we used the Kaldi toolkit. A statistical tri-gram language model that is extracted from the AsoSoft text corpus is used in the system. Several standard recipes including HMM-based models (i.e., mono, tri1, tr2, tri2, tri3), SGMM, and DNN methods are used to generate the acoustic model. These methods are trained with AsoSoft Speech-Office and AsoSoft Speech-Crowdsourcing and a combination of them. The best performance achieved by the SGMM acoustic model which results in 13.9% of the average word error rate (on different document topics) and 4.9% for the general topic.


Distant-Supervised Slot-Filling for E-Commerce Queries

arXiv.org Artificial Intelligence

Slot-filling refers to the task of annotating individual terms in a query with the corresponding intended product characteristics (product type, brand, gender, size, color, etc.). These characteristics can then be used by a search engine to return results that better match the query's product intent. Traditional methods for slot-filling require the availability of training data with ground truth slot-annotation information. However, generating such labeled data, especially in e-commerce is expensive and time-consuming because the number of slots increases as new products are added. In this paper, we present distant-supervised probabilistic generative models, that require no manual annotation. The proposed approaches leverage the readily available historical query logs and the purchases that these queries led to, and also exploit co-occurrence information among the slots in order to identify intended product characteristics. We evaluate our approaches by considering how they affect retrieval performance, as well as how well they classify the slots. In terms of retrieval, our approaches achieve better ranking performance (up to 156%) over Okapi BM25. Moreover, our approach that leverages co-occurrence information leads to better performance than the one that does not on both the retrieval and slot classification tasks.


Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things

arXiv.org Artificial Intelligence

In the Internet of Things (IoT) era, billions of sensors and devices collect and process data from the environment, transmit them to cloud centers, and receive feedback via the internet for connectivity and perception. However, transmitting massive amounts of heterogeneous data, perceiving complex environments from these data, and then making smart decisions in a timely manner are difficult. Artificial intelligence (AI), especially deep learning, is now a proven success in various areas including computer vision, speech recognition, and natural language processing. AI introduced into the IoT heralds the era of artificial intelligence of things (AIoT). This paper presents a comprehensive survey on AIoT to show how AI can empower the IoT to make it faster, smarter, greener, and safer. Specifically, we briefly present the AIoT architecture in the context of cloud computing, fog computing, and edge computing. Then, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving. Next, we summarize some promising applications of AIoT that are likely to profoundly reshape our world. Finally, we highlight the challenges facing AIoT and some potential research opportunities.


Bayesian Subspace HMM for the Zerospeech 2020 Challenge

arXiv.org Machine Learning

In this paper we describe our submission to the Zerospeech 2020 challenge, where the participants are required to discover latent representations from unannotated speech, and to use those representations to perform speech synthesis, with synthesis quality used as a proxy metric for the unit quality. In our system, we use the Bayesian Subspace Hidden Markov Model (SHMM) for unit discovery. The SHMM models each unit as an HMM whose parameters are constrained to lie in a low dimensional subspace of the total parameter space which is trained to model phonetic variability. Our system compares favorably with the baseline on the human-evaluated character error rate while maintaining significantly lower unit bitrate.