Collaborating Authors


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.

15 Best Udacity Machine Learning Courses


This is an intermediate-level free artificial intelligence course. This course will teach the basics of modern AI as well as some of the representative applications of AI including machine learning, probabilistic reasoning, robotics, computer vision, and natural language processing. To understand this course, you should have some previous understanding of probability theory and linear algebra.

Educational Content Linking for Enhancing Learning Need Remediation in MOOCs Artificial Intelligence

Since its introduction in 2011, there have been over 4000 MOOCs on various subjects on the Web, serving over 35 million learners. MOOCs have shown the ability to democratize knowledge dissemination and bring the best education in the world to every learner. However, the disparate distances between participants, the size of the learner population, and the heterogeneity of the learners' backgrounds make it extremely difficult for instructors to interact with the learners in a timely manner, which adversely affects learning experience. To address the challenges, in this thesis, we propose a framework: educational content linking. By linking and organizing pieces of learning content scattered in various course materials into an easily accessible structure, we hypothesize that this framework can provide learners guidance and improve content navigation. Since most instruction and knowledge acquisition in MOOCs takes place when learners are surveying course materials, better content navigation may help learners find supporting information to resolve their confusion and thus improve learning outcome and experience. To support our conjecture, we present end-to-end studies to investigate our framework around two research questions: 1) can manually generated linking improve learning? 2) can learning content be generated with machine learning methods? For studying the first question, we built an interface that present learning materials and visualize the linking among them simultaneously. We found the interface enables users to search for desired course materials more efficiently, and retain more concepts more readily. For the second question, we propose an automatic content linking algorithm based on conditional random fields. We demonstrate that automatically generated linking can still lead to better learning, although the magnitude of the improvement over the unlinked interface is smaller.

Probabilistic Load Forecasting Based on Adaptive Online Learning Machine Learning

Load forecasting is crucial for multiple energy management tasks such as scheduling generation capacity, planning supply and demand, and minimizing energy trade costs. Such relevance has increased even more in recent years due to the integration of renewable energies, electric cars, and microgrids. Conventional load forecasting techniques obtain single-value load forecasts by exploiting consumption patterns of past load demand. However, such techniques cannot assess intrinsic uncertainties in load demand, and cannot capture dynamic changes in consumption patterns. To address these problems, this paper presents a method for probabilistic load forecasting based on the adaptive online learning of hidden Markov models. We propose learning and forecasting techniques with theoretical guarantees, and experimentally assess their performance in multiple scenarios. In particular, we develop adaptive online learning techniques that update model parameters recursively, and sequential prediction techniques that obtain probabilistic forecasts using the most recent parameters. The performance of the method is evaluated using multiple datasets corresponding with regions that have different sizes and display assorted time-varying consumption patterns. The results show that the proposed method can significantly improve the performance of existing techniques for a wide range of scenarios.

Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things Artificial Intelligence

In the Internet of Things (IoT) era, billions of sensors and devices collect and process data from the environment, transmit them to cloud centers, and receive feedback via the internet for connectivity and perception. However, transmitting massive amounts of heterogeneous data, perceiving complex environments from these data, and then making smart decisions in a timely manner are difficult. Artificial intelligence (AI), especially deep learning, is now a proven success in various areas including computer vision, speech recognition, and natural language processing. AI introduced into the IoT heralds the era of artificial intelligence of things (AIoT). This paper presents a comprehensive survey on AIoT to show how AI can empower the IoT to make it faster, smarter, greener, and safer. Specifically, we briefly present the AIoT architecture in the context of cloud computing, fog computing, and edge computing. Then, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving. Next, we summarize some promising applications of AIoT that are likely to profoundly reshape our world. Finally, we highlight the challenges facing AIoT and some potential research opportunities.

Online learning in MDPs with linear function approximation and bandit feedback Machine Learning

We consider an online learning problem where the learner interacts with a Markov decision process in a sequence of episodes, where the reward function is allowed to change between episodes in an adversarial manner and the learner only gets to observe the rewards associated with its actions. We allow the state space to be arbitrarily large, but we assume that all action-value functions can be represented as linear functions in terms of a known low-dimensional feature map, and that the learner has access to a simulator of the environment that allows generating trajectories from the true MDP dynamics. Our main contribution is developing a computationally efficient algorithm that we call MDP-LinExp3, and prove that its regret is bounded by $\widetilde{\mathcal{O}}\big(H^2 T^{2/3} (dK)^{1/3}\big)$, where $T$ is the number of episodes, $H$ is the number of steps in each episode, $K$ is the number of actions, and $d$ is the dimension of the feature map. We also show that the regret can be improved to $\widetilde{\mathcal{O}}\big(H^2 \sqrt{TdK}\big)$ under much stronger assumptions on the MDP dynamics. To our knowledge, MDP-LinExp3 is the first provably efficient algorithm for this problem setting.

Deep Learning Prerequisites: Logistic Regression in Python


Online Courses Udemy | Deep Learning Prerequisites: Logistic Regression in Python Data science techniques for professionals and students - learn the theory behind logistic regression and code in Python BESTSELLER Created by Lazy Programmer Inc.  English [Auto-generated], Portuguese [Auto-generated], 1 more Students also bought Natural Language Processing with Deep Learning in Python Data Science: Natural Language Processing (NLP) in Python Deep Learning: Advanced Computer Vision (GANs, SSD, +More!) Unsupervised Machine Learning Hidden Markov Models in Python Modern Deep Learning in Python Preview this course GET COUPON CODE 100% Off Udemy Coupon . Free Udemy Courses . Online Classes

Online Learning in Markov Decision Processes with Adversarially Chosen Transition Probability Distributions

Neural Information Processing Systems

We study the problem of online learning Markov Decision Processes (MDPs) when both the transition distributions and loss functions are chosen by an adversary. We present an algorithm that, under a mixing assumption, achieves $O(\sqrt{T\log \Pi } \log \Pi)$ regret with respect to a comparison set of policies $\Pi$. The regret is independent of the size of the state and action spaces. When expectations over sample paths can be computed efficiently and the comparison set $\Pi$ has polynomial size, this algorithm is efficient. We also consider the episodic adversarial online shortest path problem.

What's happened in MOOC Posts Analysis, Knowledge Tracing and Peer Feedbacks? A Review Artificial Intelligence

Learning Management Systems (LMS) and Educational Data Mining (EDM) are two important parts of online educational environment with the former being a centralised web-based information systems where the learning content is managed and learning activities are organised (Stone and Zheng,2014) and latter focusing on using data mining techniques for the analysis of data so generated. As part of this work, we present a literature review of three major tasks of EDM (See section 2), by identifying shortcomings and existing open problems, and a Blumenfield chart (See section 3). The consolidated set of papers and resources so used are released in The coverage statistics and review matrix of the survey are as shown in Figure 1 & Table 1 respectively. Acronym expansions are added in the Appendix Section 4.1.

Artificial Intelligence for Social Good: A Survey Artificial Intelligence

Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.