Goto

Collaborating Authors

Results


2022 Machine Learning A to Z : 5 Machine Learning Projects

#artificialintelligence

Evaluation metrics to analyze the performance of models. Different methods to deal with imbalanced data. Implementation of Content and Collaborative based filtering. Implementation of Different algorithms used for Time Series forecasting. Evaluation metrics to analyze the performance of models.


Ensembles in Machine Learning

#artificialintelligence

Ensemble methods are well established as an algorithmic cornerstone in machine learning (ML). Just as in real life, in ML a committee of experts will often perform better than an individual provided appropriate care is taken in constituting the committee. Since the earliest days of ML research, a variety of ensemble strategies have been developed with random forests and gradient boosting emerging as leading-edge methods in classification today. It has been recognised since the early days of ML research that ensembles of classifiers can be more accurate than individual models. In ML, ensembles are effectively committees that aggregate the predictions of individual classifiers. They are effective for very much the same reasons a committee of experts works in human decision making, they can bring different expertise to bear and the averaging effect can reduce errors. This article presents a tutorial on the main ensemble methods in use in ML with links to Python notebooks and datasets illustrating these methods in action. The objective is to help practitioners get started with ML ensembles and to provide an insight into when and why ensembles are effective. There have been a lot of developments since then and the ensemble idea is still to the forefront in ML applications. For example, random forests [2] and gradient boosting [7] would be considered among the most powerful methods available to ML practitioners today. The generic ensemble idea is presented in Figure 1. All ensembles are made up of a collection of base classifiers, also known as members or estimators.


2022 Machine Learning A to Z : 5 Machine Learning Projects

#artificialintelligence

Evaluation metrics to analyze the performance of models Industry relevance of linear and logistic regression Mathematics behind KNN, SVM and Naive Bayes algorithms Implementation of KNN, SVM and Naive Bayes using sklearn Attribute selection methods- Gini Index and Entropy Mathematics behind Decision trees and random forest Boosting algorithms:- Adaboost, Gradient Boosting and XgBoost Different Algorithms for Clustering Different methods to deal with imbalanced data Correlation Filtering Content and Collaborative based filtering Singular Value Decomposition Different algorithms used for Time Series forecasting Hands on Real-World examples. To make sense out of this course, you should be well aware of linear algebra, calculus, statistics, probability and python programming language. To make sense out of this course, you should be well aware of linear algebra, calculus, statistics, probability and python programming language. This course is a perfect fit for you. This course will take you step by step into the world of Machine Learning.


Introduction to Binary Classification with PyCaret - KDnuggets

#artificialintelligence

PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows. It is an end-to-end machine learning and model management tool that speeds up the experiment cycle exponentially and makes you more productive. In comparison with the other open-source machine learning libraries, PyCaret is an alternate low-code library that can be used to replace hundreds of lines of code with few lines only. This makes experiments exponentially fast and efficient. PyCaret is essentially a Python wrapper around several machine learning libraries and frameworks such as scikit-learn, XGBoost, LightGBM, CatBoost, spaCy, Optuna, Hyperopt, Ray, and a few more.


[100%OFF] Machine Learning & Deep Learning in Python & R

#artificialintelligence

Learn how to solve real life problem using the Machine learning techniques Machine Learning models such as Linear Regression, Logistic Regression, KNN etc. Advanced Machine Learning models such as Decision trees, XGBoost, Random Forest, SVM etc. Understanding of basics of statistics and concepts of Machine Learning How to do basic statistical operations and run ML models in Python Indepth knowledge of data collection and data preprocessing for Machine Learning problem How to convert business problem into a Machine learning problem Can I get a certificate after completing the course? Are there any other coupons available for this course? Note: 100% OFF Udemy coupon codes are valid for maximum 3 days only. Look for "ENROLL NOW" button at the end of the post. Disclosure: This post may contain affiliate links and we may get small commission if you make a purchase.


Parallel XGBoost with Dask in Python

#artificialintelligence

Out of the box, XGBoost cannot be trained on datasets larger than your computer memory; Python will throw a MemoryError. This tutorial will show you how to go beyond your local machine limitations by leveraging distributed XGBoost with Dask with only minor changes to your existing code. Here is the code we will use if you want to jump right in. By default, XGBoost trains models sequentially. This is fine for basic projects, but as the size of your dataset and/or ML model grows, you may want to consider running XGBoost in distributed mode with Dask to speed up computations and reduce the burden on your local machine.


Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021

arXiv.org Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.


Ensemble Machine Learning in Python: Random Forest, AdaBoost

#artificialintelligence

In recent years, we've seen a resurgence in AI, or artificial intelligence, and machine learning. Machine learning has led to some amazing results, like being able to analyze medical images and predict diseases on-par with human experts. Google's AlphaGo program was able to beat a world champion in the strategy game go using deep reinforcement learning. Machine learning is even being used to program self driving cars, which is going to change the automotive industry forever. Imagine a world with drastically reduced car accidents, simply by removing the element of human error.


Machine Learning in Python with 5 Machine Learning Projects

#artificialintelligence

This course is a perfect fit for you. This course will take you step by step into the world of Machine Learning. Machine Learning is the study of computer algorithms that automates analytical model building. It is a branch of Artificial Intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. Machine Learning is actively being used today, perhaps in many more places than one world expects.


Ensemble Machine Learning With Python (7-Day Mini-Course)

#artificialintelligence

Ensemble learning refers to machine learning models that combine the predictions from two or more models. Ensembles are an advanced approach to machine learning that are often used when the capability and skill of the predictions are more important than using a simple and understandable model. As such, they are often used by top and winning participants in machine learning competitions like the One Million Dollar Netflix Prize and Kaggle Competitions. Modern machine learning libraries like scikit-learn Python provide a suite of advanced ensemble learning methods that are easy to configure and use correctly without data leakage, a common concern when using ensemble algorithms. In this crash course, you will discover how you can get started and confidently bring ensemble learning algorithms to your predictive modeling project with Python in seven days.