Goto

Collaborating Authors

Ensemble Learning: Instructional Materials


Gradient Boosting with Scikit-Learn, XGBoost, LightGBM, and CatBoost

#artificialintelligence

Gradient boosting is a powerful ensemble machine learning algorithm. It's popular for structured predictive modeling problems, such as classification and regression on tabular data, and is often the main algorithm or one of the main algorithms used in winning solutions to machine learning competitions, like those on Kaggle. There are many implementations of gradient boosting available, including standard implementations in SciPy and efficient third-party libraries. Each uses a different interface and even different names for the algorithm. In this tutorial, you will discover how to use gradient boosting models for classification and regression in Python. Standardized code examples are provided for the four major implementations of gradient boosting in Python, ready for you to copy-paste and use in your own predictive modeling project.


Bagging and Random Forest for Imbalanced Classification

#artificialintelligence

Bagging is an ensemble algorithm that fits multiple models on different subsets of a training dataset, then combines the predictions from all models. Random forest is an extension of bagging that also randomly selects subsets of features used in each data sample. Both bagging and random forests have proven effective on a wide range of different predictive modeling problems. Although effective, they are not suited to classification problems with a skewed class distribution. Nevertheless, many modifications to the algorithms have been proposed that adapt their behavior and make them better suited to a severe class imbalance. In this tutorial, you will discover how to use bagging and random forest for imbalanced classification.


Random Forest Algorithm - Random Forest Explained Random Forest in Machine Learning Simplilearn

#artificialintelligence

This Random Forest Algorithm tutorial will explain how Random Forest algorithm works in Machine Learning. By the end of this video, you will be able to understand what is Machine Learning, what is Classification problem, applications of Random Forest, why we need Random Forest, how it works with simple examples and how to implement Random Forest algorithm in Python. Below are the topics covered in this Machine Learning tutorial: 1. You can also go through the Slides here: https://goo.gl/K8T4tW Machine Learning Articles: https://www.simplilearn.com/what-is-a... To gain in-depth knowledge of Machine Learning, check our Machine Learning certification training course: https://www.simplilearn.com/big-data-... #MachineLearningAlgorithms #Datasciencecourse #DataScience #SimplilearnMachineLearning #MachineLearningCourse - - - - - - - - About Simplilearn Machine Learning course: A form of artificial intelligence, Machine Learning is revolutionizing the world of computing as well as all people's digital interactions.


The Theory Behind Overfitting, Cross Validation, Regularization, Bagging, and Boosting: Tutorial

arXiv.org Machine Learning

In this tutorial paper, we first define mean squared error, variance, covariance, and bias of both random variables and classification/predictor models. Then, we formulate the true and generalization errors of the model for both training and validation/test instances where we make use of the Stein's Unbiased Risk Estimator (SURE). We define overfitting, underfitting, and generalization using the obtained true and generalization errors. We introduce cross validation and two well-known examples which are $K$-fold and leave-one-out cross validations. We briefly introduce generalized cross validation and then move on to regularization where we use the SURE again. We work on both $\ell_2$ and $\ell_1$ norm regularizations. Then, we show that bootstrap aggregating (bagging) reduces the variance of estimation. Boosting, specifically AdaBoost, is introduced and it is explained as both an additive model and a maximum margin model, i.e., Support Vector Machine (SVM). The upper bound on the generalization error of boosting is also provided to show why boosting prevents from overfitting. As examples of regularization, the theory of ridge and lasso regressions, weight decay, noise injection to input/weights, and early stopping are explained. Random forest, dropout, histogram of oriented gradients, and single shot multi-box detector are explained as examples of bagging in machine learning and computer vision. Finally, boosting tree and SVM models are mentioned as examples of boosting.


Random Forest Algorithm in Machine Learning

#artificialintelligence

Random forest algorithm is a one of the most popular and most powerful supervised Machine Learning algorithm in Machine Learning that is capable of performing both regression and classification tasks. As the name suggest, this algorithm creates the forest with a number of decision trees. Random Forest Algorithm in Machine Learning: Machine learning is a scientific discipline that explores the construction and study of algorithms that can learn from data. Such algorithms operate by building a model from example inputs and using that to make predictions or decisions, rather than following strictly static program instructions. Machine learning is closely related to and often overlaps with computational statistics; a discipline that also specializes in prediction-making.


Gentle Introduction of XGBoost Library – Mohit Sharma – Medium

#artificialintelligence

In this article, you will discover XGBoost and get a gentle introduction to what it is, where it came from and how you can learn more. Bagging: It is an approach where you take random samples of data, build learning algorithms and take simple means to find bagging probabilities. Boosting: Boosting is similar, however, the selection of sample is made more intelligently. We subsequently give more and more weight to hard to classify observations. XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable.


A high-bias, low-variance introduction to Machine Learning for physicists

arXiv.org Machine Learning

Machine Learning (ML) is one of the most exciting and dynamic areas of modern research and application. The purpose of this review is to provide an introduction to the core concepts and tools of machine learning in a manner easily understood and intuitive to physicists. The review begins by covering fundamental concepts in ML and modern statistics such as the bias-variance tradeoff, overfitting, regularization, and generalization before moving on to more advanced topics in both supervised and unsupervised learning. Topics covered in the review include ensemble models, deep learning and neural networks, clustering and data visualization, energy-based models (including MaxEnt models and Restricted Boltzmann Machines), and variational methods. Throughout, we emphasize the many natural connections between ML and statistical physics. A notable aspect of the review is the use of Python notebooks to introduce modern ML/statistical packages to readers using physics-inspired datasets (the Ising Model and Monte-Carlo simulations of supersymmetric decays of proton-proton collisions). We conclude with an extended outlook discussing possible uses of machine learning for furthering our understanding of the physical world as well as open problems in ML where physicists maybe able to contribute. (Notebooks are available at https://physics.bu.edu/~pankajm/MLnotebooks.html )




How to Win a Data Science Competition: Learn from Top Kagglers Coursera

@machinelearnbot

About this course: If you want to break into competitive data science, then this course is for you! Participating in predictive modelling competitions can help you gain practical experience, improve and harness your data modelling skills in various domains such as credit, insurance, marketing, natural language processing, sales' forecasting and computer vision to name a few. At the same time you get to do it in a competitive context against thousands of participants where each one tries to build the most predictive algorithm. Pushing each other to the limit can result in better performance and smaller prediction errors. Being able to achieve high ranks consistently can help you accelerate your career in data science.