Goto

Collaborating Authors

Results


Face Recognition: 3D Face Recognition from Infancy to Product

#artificialintelligence

When I went to grad school, I didn't choose 3D face recognition because I was interested in biometrics. I wanted to do computer vision for cars, and the professor I wanted to work with had left the university. So I went to the Computer Vision Research Lab (CVRL), and I asked what research they had available. Most of their work at the time was biometrics, and 3D face sounded interesting. It could pay the bills and give me experience that would translate to autonomous vehicles.


Computer Vision In Python! Face Detection & Image Processing

#artificialintelligence

Master Python By Implementing Face Recognition & Image Processing In Python Created by Emenwa Global Students also bought Deep Learning and Computer Vision A-Z: OpenCV, SSD & GANs Python for Computer Vision with OpenCV and Deep Learning Deep Learning: Advanced Computer Vision (GANs, SSD, More!) Autonomous Cars: Deep Learning and Computer Vision in PythonPreview this course Udemy GET COUPON CODE Computer vision is an interdisciplinary field that deals with how computers can be made to gain high-level understanding from digital images or videos. From the perspective of engineering, it seeks to automate tasks that the human visual system can do. Computer vision is concerned with the automatic extraction, analysis and understanding of useful information from a single image or a sequence of images. It involves the development of a theoretical and algorithmic basis to achieve automatic visual understanding. As a scientific discipline, computer vision is concerned with the theory behind artificial systems that extract information from images. The image data can take many forms, such as video sequences, views from multiple cameras, or multi-dimensional data from a medical scanner.


Computer Vision Bootcamp with Python (OpenCV) - YOLO, SSD

#artificialintelligence

Description This course is about the fundamental concept of image processing, focusing on face detection and object detection. These topics are getting very hot nowadays because these learning algorithms can be used in several fields from software engineering to crime investigation. Self-driving cars (for example lane detection approaches) relies heavily on computer vision. With the advent of deep learning and graphical processing units (GPUs) in the past decade it's become possible to run these algorithms even in real-time videos. So what are you going to learn in this course?


What is Computer Vision and How is it Transforming Our World?

#artificialintelligence

Vision is the biggest gift given to humans. As we continue to struggle towards making technology more and more like us, this is one thing we need to put the most effort into. Machines are now easily able to capture images, but recognizing the surrounding environment and objects cannot be done if they don't let how to interpret the information that lies in them. That's why Computer Vision is important if we want to make humans truly intelligent. Let's see what it is and how it is making different fields better.


The Future of AI Part 1

#artificialintelligence

It was reported that Venture Capital investments into AI related startups made a significant increase in 2018, jumping by 72% compared to 2017, with 466 startups funded from 533 in 2017. PWC moneytree report stated that that seed-stage deal activity in the US among AI-related companies rose to 28% in the fourth-quarter of 2018, compared to 24% in the three months prior, while expansion-stage deal activity jumped to 32%, from 23%. There will be an increasing international rivalry over the global leadership of AI. President Putin of Russia was quoted as saying that "the nation that leads in AI will be the ruler of the world". Billionaire Mark Cuban was reported in CNBC as stating that "the world's first trillionaire would be an AI entrepreneur".


Embedded Development Boards for Edge-AI: A Comprehensive Report

arXiv.org Artificial Intelligence

The use of Deep Learning and Machine Learning is becoming pervasive day by day which is opening doors to new opportunities in every aspect of technology. Its application Ranges from Health-care to Self-driving Cars, Home Automation to Smart-agriculture, and Industry 4.0. Traditionally the majority of the processing for IoT applications is being done on a central cloud but that has its issues; which include latency, security, bandwidth, and privacy, etc. It is estimated that there will be around 20 Million IoT devices by 2020 which will increase problems with sending data to the cloud and doing the processing there. A new trend of processing the data on the edge of the network is emerging. The idea is to do processing as near the point of data production as possible. Doing processing on the nodes generating the data is called Edge Computing and doing processing on a layer between the cloud and the point of data production is called Fog computing. There are no standard definitions for any of these, hence they are usually used interchangeably. In this paper, we have reviewed the development boards available for running Artificial Intelligence algorithms on the Edge


Online Spatiotemporal Action Detection and Prediction via Causal Representations

arXiv.org Artificial Intelligence

In this thesis, we focus on video action understanding problems from an online and real-time processing point of view. We start with the conversion of the traditional offline spatiotemporal action detection pipeline into an online spatiotemporal action tube detection system. An action tube is a set of bounding connected over time, which bounds an action instance in space and time. Next, we explore the future prediction capabilities of such detection methods by extending the an existing action tube into the future by regression. Later, we seek to establish that online/causal representations can achieve similar performance to that of offline three dimensional (3D) convolutional neural networks (CNNs) on various tasks, including action recognition, temporal action segmentation and early prediction.


3D for Free: Crossmodal Transfer Learning using HD Maps

arXiv.org Artificial Intelligence

3D object detection is a core perceptual challenge for robotics and autonomous driving. However, the class-taxonomies in modern autonomous driving datasets are significantly smaller than many influential 2D detection datasets. In this work, we address the long-tail problem by leveraging both the large class-taxonomies of modern 2D datasets and the robustness of state-of-the-art 2D detection methods. We proceed to mine a large, unlabeled dataset of images and LiDAR, and estimate 3D object bounding cuboids, seeded from an off-the-shelf 2D instance segmentation model. Critically, we constrain this ill-posed 2D-to-3D mapping by using high-definition maps and object size priors. The result of the mining process is 3D cuboids with varying confidence. This mining process is itself a 3D object detector, although not especially accurate when evaluated as such. However, we then train a 3D object detection model on these cuboids, consistent with other recent observations in the deep learning literature, we find that the resulting model is fairly robust to the noisy supervision that our mining process provides. We mine a collection of 1151 unlabeled, multimodal driving logs from an autonomous vehicle and use the discovered objects to train a LiDAR-based object detector. We show that detector performance increases as we mine more unlabeled data. With our full, unlabeled dataset, our method performs competitively with fully supervised methods, even exceeding the performance for certain object categories, without any human 3D annotations.


The Emergence Of Hardware As A Key Enabler For The Age Of Artificial Intelligence

#artificialintelligence

Over the past few decades, software has been the engine of innovation for countless applications. From PCs to mobile phones, well-defined hardware platforms and instruction set architectures (ISA) have enabled many important advancements across vertical markets. The emergence of abundant-data computing is changing the software-hardware balance in a dramatic way. Diverse AI applications in facial recognition, virtual assistance, autonomous vehicles and more are sharing a common feature: They rely on hardware as the core enabler of innovation. Since 2017, the AI hardware market has grown 60-70% annually, and is projected to reach $65 billion by 2025.


Driving among Flatmobiles: Bird-Eye-View occupancy grids from a monocular camera for holistic trajectory planning

arXiv.org Artificial Intelligence

Camera-based end-to-end driving neural networks bring the promise of a low-cost system that maps camera images to driving control commands. These networks are appealing because they replace laborious hand engineered building blocks but their black-box nature makes them difficult to delve in case of failure. Recent works have shown the importance of using an explicit intermediate representation that has the benefits of increasing both the interpretability and the accuracy of networks' decisions. Nonetheless, these camera-based networks reason in camera view where scale is not homogeneous and hence not directly suitable for motion forecasting. In this paper, we introduce a novel monocular camera-only holistic end-to-end trajectory planning network with a Bird-Eye-View (BEV) intermediate representation that comes in the form of binary Occupancy Grid Maps (OGMs). To ease the prediction of OGMs in BEV from camera images, we introduce a novel scheme where the OGMs are first predicted as semantic masks in camera view and then warped in BEV using the homography between the two planes. The key element allowing this transformation to be applied to 3D objects such as vehicles, consists in predicting solely their footprint in camera-view, hence respecting the flat world hypothesis implied by the homography.