Goto

Collaborating Authors

Results


Fantastic Data and How to Query Them

arXiv.org Artificial Intelligence

It is commonly acknowledged that the availability of the huge amount of (training) data is one of the most important factors for many recent advances in Artificial Intelligence (AI). However, datasets are often designed for specific tasks in narrow AI sub areas and there is no unified way to manage and access them. This not only creates unnecessary overheads when training or deploying Machine Learning models but also limits the understanding of the data, which is very important for data-centric AI. In this paper, we present our vision about a unified framework for different datasets so that they can be integrated and queried easily, e.g., using standard query languages. We demonstrate this in our ongoing work to create a framework for datasets in Computer Vision and show its advantages in different scenarios.


What is Event Knowledge Graph: A Survey

arXiv.org Artificial Intelligence

Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many machine learning and artificial intelligence applications, such as intelligent search, question-answering, recommendation, and text generation. This paper provides a comprehensive survey of EKG from history, ontology, instance, and application views. Specifically, to characterize EKG thoroughly, we focus on its history, definitions, schema induction, acquisition, related representative graphs/systems, and applications. The development processes and trends are studied therein. We further summarize perspective directions to facilitate future research on EKG.


Toward a New Science of Common Sense

arXiv.org Artificial Intelligence

Common sense has always been of interest in AI, but has rarely taken center stage. Despite its mention in one of John McCarthy's earliest papers and years of work by dedicated researchers, arguably no AI system with a serious amount of general common sense has ever emerged. Why is that? What's missing? Examples of AI systems' failures of common sense abound, and they point to AI's frequent focus on expertise as the cause. Those attempting to break the brittleness barrier, even in the context of modern deep learning, have tended to invest their energy in large numbers of small bits of commonsense knowledge. But all the commonsense knowledge fragments in the world don't add up to a system that actually demonstrates common sense in a human-like way. We advocate examining common sense from a broader perspective than in the past. Common sense is more complex than it has been taken to be and is worthy of its own scientific exploration.


Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings

arXiv.org Artificial Intelligence

We have created a knowledge graph based on major data sources used in ecotoxicological risk assessment. We have applied this knowledge graph to an important task in risk assessment, namely chemical effect prediction. We have evaluated nine knowledge graph embedding models from a selection of geometric, decomposition, and convolutional models on this prediction task. We show that using knowledge graph embeddings can increase the accuracy of effect prediction with neural networks. Furthermore, we have implemented a fine-tuning architecture which adapts the knowledge graph embeddings to the effect prediction task and leads to a better performance. Finally, we evaluate certain characteristics of the knowledge graph embedding models to shed light on the individual model performance.


Survey on English Entity Linking on Wikidata

arXiv.org Artificial Intelligence

Wikidata is a frequently updated, community-driven, and multilingual knowledge graph. Hence, Wikidata is an attractive basis for Entity Linking, which is evident by the recent increase in published papers. This survey focuses on four subjects: (1) Which Wikidata Entity Linking datasets exist, how widely used are they and how are they constructed? (2) Do the characteristics of Wikidata matter for the design of Entity Linking datasets and if so, how? (3) How do current Entity Linking approaches exploit the specific characteristics of Wikidata? (4) Which Wikidata characteristics are unexploited by existing Entity Linking approaches? This survey reveals that current Wikidata-specific Entity Linking datasets do not differ in their annotation scheme from schemes for other knowledge graphs like DBpedia. Thus, the potential for multilingual and time-dependent datasets, naturally suited for Wikidata, is not lifted. Furthermore, we show that most Entity Linking approaches use Wikidata in the same way as any other knowledge graph missing the chance to leverage Wikidata-specific characteristics to increase quality. Almost all approaches employ specific properties like labels and sometimes descriptions but ignore characteristics such as the hyper-relational structure. Hence, there is still room for improvement, for example, by including hyper-relational graph embeddings or type information. Many approaches also include information from Wikipedia, which is easily combinable with Wikidata and provides valuable textual information, which Wikidata lacks.


Natural Language Processing in-and-for Design Research

arXiv.org Artificial Intelligence

We review the scholarly contributions that utilise Natural Language Processing (NLP) methods to support the design process. Using a heuristic approach, we collected 223 articles published in 32 journals and within the period 1991-present. We present state-of-the-art NLP in-and-for design research by reviewing these articles according to the type of natural language text sources: internal reports, design concepts, discourse transcripts, technical publications, consumer opinions, and others. Upon summarizing and identifying the gaps in these contributions, we utilise an existing design innovation framework to identify the applications that are currently being supported by NLP. We then propose a few methodological and theoretical directions for future NLP in-and-for design research.


RDF-to-Text Generation with Reinforcement Learning Based Graph-augmented Structural Neural Encoders

arXiv.org Artificial Intelligence

Considering a collection of RDF triples, the RDF-to-text generation task aims to generate a text description. Most previous methods solve this task using a sequence-to-sequence model or using a graph-based model to encode RDF triples and to generate a text sequence. Nevertheless, these approaches fail to clearly model the local and global structural information between and within RDF triples. Moreover, the previous methods also face the non-negligible problem of low faithfulness of the generated text, which seriously affects the overall performance of these models. To solve these problems, we propose a model combining two new graph-augmented structural neural encoders to jointly learn both local and global structural information in the input RDF triples. To further improve text faithfulness, we innovatively introduce a reinforcement learning (RL) reward based on information extraction (IE). We first extract triples from the generated text using a pretrained IE model and regard the correct number of the extracted triples as the additional RL reward. Experimental results on two benchmark datasets demonstrate that our proposed model outperforms the state-of-the-art baselines, and the additional reinforcement learning reward does help to improve the faithfulness of the generated text.


Recent Advances in Automated Question Answering In Biomedical Domain

arXiv.org Artificial Intelligence

The objective of automated Question Answering (QA) systems is to provide answers to user queries in a time efficient manner. The answers are usually found in either databases (or knowledge bases) or a collection of documents commonly referred to as the corpus. In the past few decades there has been a proliferation of acquisition of knowledge and consequently there has been an exponential growth in new scientific articles in the field of biomedicine. Therefore, it has become difficult to keep track of all the information in the domain, even for domain experts. With the improvements in commercial search engines, users can type in their queries and get a small set of documents most relevant for answering their query, as well as relevant snippets from the documents in some cases. However, it may be still tedious and time consuming to manually look for the required information or answers. This has necessitated the development of efficient QA systems which aim to find exact and precise answers to user provided natural language questions in the domain of biomedicine. In this paper, we introduce the basic methodologies used for developing general domain QA systems, followed by a thorough investigation of different aspects of biomedical QA systems, including benchmark datasets and several proposed approaches, both using structured databases and collection of texts. We also explore the limitations of current systems and explore potential avenues for further advancement.


Shared Model of Sense-making for Human-Machine Collaboration

arXiv.org Artificial Intelligence

We present a model of sense-making that greatly facilitates the collaboration between an intelligent analyst and a knowledge-based agent. It is a general model grounded in the science of evidence and the scientific method of hypothesis generation and testing, where sense-making hypotheses that explain an observation are generated, relevant evidence is then discovered, and the hypotheses are tested based on the discovered evidence. We illustrate how the model enables an analyst to directly instruct the agent to understand situations involving the possible production of weapons (e.g., chemical warfare agents) and how the agent becomes increasingly more competent in understanding other situations from that domain (e.g., possible production of centrifuge-enriched uranium or of stealth fighter aircraft).


Principled Representation Learning for Entity Alignment

arXiv.org Artificial Intelligence

Embedding-based entity alignment (EEA) has recently received great attention. Despite significant performance improvement, few efforts have been paid to facilitate understanding of EEA methods. Most existing studies rest on the assumption that a small number of pre-aligned entities can serve as anchors connecting the embedding spaces of two KGs. Nevertheless, no one investigates the rationality of such an assumption. To fill the research gap, we define a typical paradigm abstracted from existing EEA methods and analyze how the embedding discrepancy between two potentially aligned entities is implicitly bounded by a predefined margin in the scoring function. Further, we find that such a bound cannot guarantee to be tight enough for alignment learning. We mitigate this problem by proposing a new approach, named NeoEA, to explicitly learn KG-invariant and principled entity embeddings. In this sense, an EEA model not only pursues the closeness of aligned entities based on geometric distance, but also aligns the neural ontologies of two KGs by eliminating the discrepancy in embedding distribution and underlying ontology knowledge. Our experiments demonstrate consistent and significant improvement in performance against the best-performing EEA methods.