Goto

Collaborating Authors

Results


Can You Code Empathy? with Pascale Fung

#artificialintelligence

ANJA KASPERSEN: Today I am very pleased to be joined by Pascale Fung. Pascale is a;rofessor in the Department of Electronic and Computer Engineering and Department of Computer Science and Engineering at The Hong Kong University of Science and Technology. She is known globally for her pioneering work on conversational artificial intelligence (AI), computational linguistics, and was one of the earliest proponents of statistical and machine-learning approaches for natural language processing (NLP). She is now leading groundbreaking research on how to build intelligent systems that can understand and empathize with humans. I have really been looking forward to this conversation with you. Your professional accolades are many, most of which we will touch on during our conversation. However, for our listeners to get to know you a bit better, I would like us to go back to your upbringing during what I understand to be a very tenuous political period in China. I was born, spent my childhood, ...


The New Intelligence Game

#artificialintelligence

The relevance of the video is that the browser identified the application being used by the IAI as Google Earth and, according to the OSC 2006 report, the Arabic-language caption reads Islamic Army in Iraq/The Military Engineering Unit – Preparations for Rocket Attack, the video was recorded in 5/1/2006, we provide, in Appendix A, a reproduction of the screenshot picture made available in the OSC report. Now, prior to the release of this video demonstration of the use of Google Earth to plan attacks, in accordance with the OSC 2006 report, in the OSC-monitored online forums, discussions took place on the use of Google Earth as a GEOINT tool for terrorist planning. On August 5, 2005 the user "Al-Illiktrony" posted a message to the Islamic Renewal Organization forum titled A Gift for the Mujahidin, a Program To Enable You to Watch Cities of the World Via Satellite, in this post the author dedicated Google Earth to the mujahidin brothers and to Shaykh Muhammad al-Mas'ari, the post was replied in the forum by "Al-Mushtaq al-Jannah" warning that Google programs retain complete information about their users. This is a relevant issue, however, there are two caveats, given the amount of Google Earth users, it may be difficult for Google to flag a jihadist using the functionality in time to prevent an attack plan, one possible solution would be for Google to flag computers based on searched websites and locations, for instance to flag computers that visit certain critical sites, but this is a problem when landmarks are used, furthermore, and this is the second caveat, one may not use one's own computer to produce the search or even mask the IP address. On October 3, 2005, as described in the OSC 2006 report, in a reply to a posting by Saddam Al-Arab on the Baghdad al-Rashid forum requesting the identification of a roughly sketched map, "Almuhannad" posted a link to a site that provided a free download of Google Earth, suggesting that the satellite imagery from Google's service could help identify the sketch.


State of AI Ethics Report (Volume 6, February 2022)

arXiv.org Artificial Intelligence

This report from the Montreal AI Ethics Institute (MAIEI) covers the most salient progress in research and reporting over the second half of 2021 in the field of AI ethics. Particular emphasis is placed on an "Analysis of the AI Ecosystem", "Privacy", "Bias", "Social Media and Problematic Information", "AI Design and Governance", "Laws and Regulations", "Trends", and other areas covered in the "Outside the Boxes" section. The two AI spotlights feature application pieces on "Constructing and Deconstructing Gender with AI-Generated Art" as well as "Will an Artificial Intellichef be Cooking Your Next Meal at a Michelin Star Restaurant?". Given MAIEI's mission to democratize AI, submissions from external collaborators have featured, such as pieces on the "Challenges of AI Development in Vietnam: Funding, Talent and Ethics" and using "Representation and Imagination for Preventing AI Harms". The report is a comprehensive overview of what the key issues in the field of AI ethics were in 2021, what trends are emergent, what gaps exist, and a peek into what to expect from the field of AI ethics in 2022. It is a resource for researchers and practitioners alike in the field to set their research and development agendas to make contributions to the field of AI ethics.


Technology Ethics in Action: Critical and Interdisciplinary Perspectives

arXiv.org Artificial Intelligence

This special issue interrogates the meaning and impacts of "tech ethics": the embedding of ethics into digital technology research, development, use, and governance. In response to concerns about the social harms associated with digital technologies, many individuals and institutions have articulated the need for a greater emphasis on ethics in digital technology. Yet as more groups embrace the concept of ethics, critical discourses have emerged questioning whose ethics are being centered, whether "ethics" is the appropriate frame for improving technology, and what it means to develop "ethical" technology in practice. This interdisciplinary issue takes up these questions, interrogating the relationships among ethics, technology, and society in action. This special issue engages with the normative and contested notions of ethics itself, how ethics has been integrated with technology across domains, and potential paths forward to support more just and egalitarian technology. Rather than starting from philosophical theories, the authors in this issue orient their articles around the real-world discourses and impacts of tech ethics--i.e., tech ethics in action.


Machine Learning: Algorithms, Models, and Applications

arXiv.org Artificial Intelligence

Recent times are witnessing rapid development in machine learning algorithm systems, especially in reinforcement learning, natural language processing, computer and robot vision, image processing, speech, and emotional processing and understanding. In tune with the increasing importance and relevance of machine learning models, algorithms, and their applications, and with the emergence of more innovative uses cases of deep learning and artificial intelligence, the current volume presents a few innovative research works and their applications in real world, such as stock trading, medical and healthcare systems, and software automation. The chapters in the book illustrate how machine learning and deep learning algorithms and models are designed, optimized, and deployed. The volume will be useful for advanced graduate and doctoral students, researchers, faculty members of universities, practicing data scientists and data engineers, professionals, and consultants working on the broad areas of machine learning, deep learning, and artificial intelligence.


Forecasting: theory and practice

arXiv.org Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.


Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021

arXiv.org Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.


Scaling Language Models: Methods, Analysis & Insights from Training Gopher

arXiv.org Artificial Intelligence

Natural language communication is core to intelligence, as it allows ideas to be efficiently shared between humans or artificially intelligent systems. The generality of language allows us to express many intelligence tasks as taking in natural language input and producing natural language output. Autoregressive language modelling -- predicting the future of a text sequence from its past -- provides a simple yet powerful objective that admits formulation of numerous cognitive tasks. At the same time, it opens the door to plentiful training data: the internet, books, articles, code, and other writing. However this training objective is only an approximation to any specific goal or application, since we predict everything in the sequence rather than only the aspects we care about. Yet if we treat the resulting models with appropriate caution, we believe they will be a powerful tool to capture some of the richness of human intelligence. Using language models as an ingredient towards intelligence contrasts with their original application: transferring text over a limited-bandwidth communication channel. Shannon's Mathematical Theory of Communication (Shannon, 1948) linked the statistical modelling of natural language with compression, showing that measuring the cross entropy of a language model is equivalent to measuring its compression rate.


Ethical and social risks of harm from Language Models

arXiv.org Artificial Intelligence

This paper aims to help structure the risk landscape associated with large-scale Language Models (LMs). In order to foster advances in responsible innovation, an in-depth understanding of the potential risks posed by these models is needed. A wide range of established and anticipated risks are analysed in detail, drawing on multidisciplinary expertise and literature from computer science, linguistics, and social sciences. We outline six specific risk areas: I. Discrimination, Exclusion and Toxicity, II. Information Hazards, III. Misinformation Harms, V. Malicious Uses, V. Human-Computer Interaction Harms, VI. Automation, Access, and Environmental Harms. The first area concerns the perpetuation of stereotypes, unfair discrimination, exclusionary norms, toxic language, and lower performance by social group for LMs. The second focuses on risks from private data leaks or LMs correctly inferring sensitive information. The third addresses risks arising from poor, false or misleading information including in sensitive domains, and knock-on risks such as the erosion of trust in shared information. The fourth considers risks from actors who try to use LMs to cause harm. The fifth focuses on risks specific to LLMs used to underpin conversational agents that interact with human users, including unsafe use, manipulation or deception. The sixth discusses the risk of environmental harm, job automation, and other challenges that may have a disparate effect on different social groups or communities. In total, we review 21 risks in-depth. We discuss the points of origin of different risks and point to potential mitigation approaches. Lastly, we discuss organisational responsibilities in implementing mitigations, and the role of collaboration and participation. We highlight directions for further research, particularly on expanding the toolkit for assessing and evaluating the outlined risks in LMs.